Jonah Heiler, Jonathan Körber, Erik Hesselmeier, Pierre Kuna, Rainer Stöhr, Philipp Fuchs, Misagh Ghezellou, Jawad Ul-Hassan, Wolfgang Knolle, Christoph Becher, Florian Kaiser, Jörg Wrachtrup
{"title":"Spectral stability of V2 centres in sub-micron 4H-SiC membranes","authors":"Jonah Heiler, Jonathan Körber, Erik Hesselmeier, Pierre Kuna, Rainer Stöhr, Philipp Fuchs, Misagh Ghezellou, Jawad Ul-Hassan, Wolfgang Knolle, Christoph Becher, Florian Kaiser, Jörg Wrachtrup","doi":"10.1038/s41535-024-00644-4","DOIUrl":null,"url":null,"abstract":"<p>Colour centres in silicon carbide emerge as a promising semiconductor quantum technology platform with excellent spin-optical coherences. However, recent efforts towards maximising the photonic efficiency via integration into nanophotonic structures proved to be challenging due to reduced spectral stabilities. Here, we provide a large-scale systematic investigation on silicon vacancy centres in thin silicon carbide membranes with thicknesses down to 0.25 μm. Our membrane fabrication process involves a combination of chemical mechanical polishing, reactive ion etching, and subsequent annealing. This leads to highly reproducible membranes with roughness values of 3–4 Å, as well as negligible surface fluorescence. We find that silicon vacancy centres show close-to lifetime limited optical linewidths with almost no signs of spectral wandering down to membrane thicknesses of ~0.7 μm. For silicon vacancy centres in thinner membranes down to 0.25 μm, we observe spectral wandering, however, optical linewidths remain below 200 MHz, which is compatible with spin-selective excitation schemes. Our work clearly shows that silicon vacancy centres can be integrated into sub-micron silicon carbide membranes, which opens the avenue towards obtaining the necessary improvements in photon extraction efficiency based on nanophotonic structuring.</p>","PeriodicalId":19283,"journal":{"name":"npj Quantum Materials","volume":"1 1","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Quantum Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41535-024-00644-4","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Colour centres in silicon carbide emerge as a promising semiconductor quantum technology platform with excellent spin-optical coherences. However, recent efforts towards maximising the photonic efficiency via integration into nanophotonic structures proved to be challenging due to reduced spectral stabilities. Here, we provide a large-scale systematic investigation on silicon vacancy centres in thin silicon carbide membranes with thicknesses down to 0.25 μm. Our membrane fabrication process involves a combination of chemical mechanical polishing, reactive ion etching, and subsequent annealing. This leads to highly reproducible membranes with roughness values of 3–4 Å, as well as negligible surface fluorescence. We find that silicon vacancy centres show close-to lifetime limited optical linewidths with almost no signs of spectral wandering down to membrane thicknesses of ~0.7 μm. For silicon vacancy centres in thinner membranes down to 0.25 μm, we observe spectral wandering, however, optical linewidths remain below 200 MHz, which is compatible with spin-selective excitation schemes. Our work clearly shows that silicon vacancy centres can be integrated into sub-micron silicon carbide membranes, which opens the avenue towards obtaining the necessary improvements in photon extraction efficiency based on nanophotonic structuring.
期刊介绍:
npj Quantum Materials is an open access journal that publishes works that significantly advance the understanding of quantum materials, including their fundamental properties, fabrication and applications.