Spectral stability of V2 centres in sub-micron 4H-SiC membranes

IF 5.4 1区 物理与天体物理 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Jonah Heiler, Jonathan Körber, Erik Hesselmeier, Pierre Kuna, Rainer Stöhr, Philipp Fuchs, Misagh Ghezellou, Jawad Ul-Hassan, Wolfgang Knolle, Christoph Becher, Florian Kaiser, Jörg Wrachtrup
{"title":"Spectral stability of V2 centres in sub-micron 4H-SiC membranes","authors":"Jonah Heiler, Jonathan Körber, Erik Hesselmeier, Pierre Kuna, Rainer Stöhr, Philipp Fuchs, Misagh Ghezellou, Jawad Ul-Hassan, Wolfgang Knolle, Christoph Becher, Florian Kaiser, Jörg Wrachtrup","doi":"10.1038/s41535-024-00644-4","DOIUrl":null,"url":null,"abstract":"<p>Colour centres in silicon carbide emerge as a promising semiconductor quantum technology platform with excellent spin-optical coherences. However, recent efforts towards maximising the photonic efficiency via integration into nanophotonic structures proved to be challenging due to reduced spectral stabilities. Here, we provide a large-scale systematic investigation on silicon vacancy centres in thin silicon carbide membranes with thicknesses down to 0.25 μm. Our membrane fabrication process involves a combination of chemical mechanical polishing, reactive ion etching, and subsequent annealing. This leads to highly reproducible membranes with roughness values of 3–4 Å, as well as negligible surface fluorescence. We find that silicon vacancy centres show close-to lifetime limited optical linewidths with almost no signs of spectral wandering down to membrane thicknesses of ~0.7 μm. For silicon vacancy centres in thinner membranes down to 0.25 μm, we observe spectral wandering, however, optical linewidths remain below 200 MHz, which is compatible with spin-selective excitation schemes. Our work clearly shows that silicon vacancy centres can be integrated into sub-micron silicon carbide membranes, which opens the avenue towards obtaining the necessary improvements in photon extraction efficiency based on nanophotonic structuring.</p>","PeriodicalId":19283,"journal":{"name":"npj Quantum Materials","volume":"1 1","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Quantum Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41535-024-00644-4","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Colour centres in silicon carbide emerge as a promising semiconductor quantum technology platform with excellent spin-optical coherences. However, recent efforts towards maximising the photonic efficiency via integration into nanophotonic structures proved to be challenging due to reduced spectral stabilities. Here, we provide a large-scale systematic investigation on silicon vacancy centres in thin silicon carbide membranes with thicknesses down to 0.25 μm. Our membrane fabrication process involves a combination of chemical mechanical polishing, reactive ion etching, and subsequent annealing. This leads to highly reproducible membranes with roughness values of 3–4 Å, as well as negligible surface fluorescence. We find that silicon vacancy centres show close-to lifetime limited optical linewidths with almost no signs of spectral wandering down to membrane thicknesses of ~0.7 μm. For silicon vacancy centres in thinner membranes down to 0.25 μm, we observe spectral wandering, however, optical linewidths remain below 200 MHz, which is compatible with spin-selective excitation schemes. Our work clearly shows that silicon vacancy centres can be integrated into sub-micron silicon carbide membranes, which opens the avenue towards obtaining the necessary improvements in photon extraction efficiency based on nanophotonic structuring.

亚微米 4H-SiC 膜中 V2 中心的光谱稳定性
碳化硅中的彩色中心是一种前景广阔的半导体量子技术平台,具有出色的自旋-光学相干性。然而,由于光谱稳定性降低,最近通过集成到纳米光子结构来最大化光子效率的努力被证明是具有挑战性的。在此,我们对厚度低至 0.25 μm 的碳化硅薄膜中的硅空位中心进行了大规模的系统研究。我们的薄膜制造工艺包括化学机械抛光、活性离子蚀刻和随后的退火。这使得膜的再现性很高,粗糙度值为 3-4 Å,表面荧光也可以忽略不计。我们发现,硅空位中心显示出接近寿命限制的光学线宽,几乎没有光谱徘徊的迹象,膜厚度可达 ~0.7 μm。对于厚度低至 0.25 μm 薄膜中的硅空位中心,我们观察到了光谱徘徊现象,但光学线宽仍低于 200 MHz,这与自旋选择性激发方案是一致的。我们的工作清楚地表明,硅空位中心可以集成到亚微米碳化硅膜中,这为在纳米光子结构的基础上提高光子萃取效率开辟了必要的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
npj Quantum Materials
npj Quantum Materials Materials Science-Electronic, Optical and Magnetic Materials
CiteScore
10.60
自引率
3.50%
发文量
107
审稿时长
6 weeks
期刊介绍: npj Quantum Materials is an open access journal that publishes works that significantly advance the understanding of quantum materials, including their fundamental properties, fabrication and applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信