Pose Impact Estimation on Face Recognition Using 3-D-Aware Synthetic Data With Application to Quality Assessment

Marcel Grimmer;Christian Rathgeb;Christoph Busch
{"title":"Pose Impact Estimation on Face Recognition Using 3-D-Aware Synthetic Data With Application to Quality Assessment","authors":"Marcel Grimmer;Christian Rathgeb;Christoph Busch","doi":"10.1109/TBIOM.2024.3361657","DOIUrl":null,"url":null,"abstract":"Evaluating the quality of facial images is essential for operating face recognition systems with sufficient accuracy. The recent advances in face quality standardisation (ISO/IEC CD3 29794-5) recommend the usage of component quality measures for breaking down face quality into its individual factors, hence providing valuable feedback for operators to re-capture low-quality images. In light of recent advances in 3D-aware generative adversarial networks, we propose a novel dataset, Syn-YawPitch, comprising 1,000 identities with varying yaw-pitch angle combinations. Utilizing this dataset, we demonstrate that pitch angles beyond 30 degrees have a significant impact on the biometric performance of current face recognition systems. Furthermore, we propose a lightweight and explainable pose quality predictor that adheres to the draft international standard of ISO/IEC CD3 29794–5 and benchmark it against state-of-the-art face image quality assessment algorithms.","PeriodicalId":73307,"journal":{"name":"IEEE transactions on biometrics, behavior, and identity science","volume":"6 2","pages":"209-218"},"PeriodicalIF":0.0000,"publicationDate":"2024-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on biometrics, behavior, and identity science","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10419006/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Evaluating the quality of facial images is essential for operating face recognition systems with sufficient accuracy. The recent advances in face quality standardisation (ISO/IEC CD3 29794-5) recommend the usage of component quality measures for breaking down face quality into its individual factors, hence providing valuable feedback for operators to re-capture low-quality images. In light of recent advances in 3D-aware generative adversarial networks, we propose a novel dataset, Syn-YawPitch, comprising 1,000 identities with varying yaw-pitch angle combinations. Utilizing this dataset, we demonstrate that pitch angles beyond 30 degrees have a significant impact on the biometric performance of current face recognition systems. Furthermore, we propose a lightweight and explainable pose quality predictor that adheres to the draft international standard of ISO/IEC CD3 29794–5 and benchmark it against state-of-the-art face image quality assessment algorithms.
利用三维感知合成数据估计姿势对人脸识别的影响并应用于质量评估
要使人脸识别系统具有足够的准确性,评估人脸图像的质量至关重要。最近在人脸质量标准化(ISO/IEC CD3 29794-5)方面取得的进展建议使用组件质量度量法将人脸质量分解为各个因素,从而为操作员重新捕捉低质量图像提供有价值的反馈。鉴于三维感知生成式对抗网络的最新进展,我们提出了一个新的数据集 Syn-YawPitch,其中包含 1,000 个具有不同偏航-俯仰角度组合的身份。利用这个数据集,我们证明了超过 30 度的俯仰角会对当前人脸识别系统的生物识别性能产生重大影响。此外,我们还提出了一种符合 ISO/IEC CD3 29794-5 国际标准草案的轻量级可解释姿势质量预测器,并将其与最先进的人脸图像质量评估算法进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
10.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信