Convenient preparation of indigo from the Ieaves of Baphicacanthus cusia(Nees) Bremek by enzymatic method and its MALDI-TOF-MS and UPLC-Q-TOF/MS analysis
IF 3.4 3区 生物学Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
HongXia Chen , Hao Zhou , Changwei Zhang , Wenjun Li , Xingying Xue , ChengZhang Wang
{"title":"Convenient preparation of indigo from the Ieaves of Baphicacanthus cusia(Nees) Bremek by enzymatic method and its MALDI-TOF-MS and UPLC-Q-TOF/MS analysis","authors":"HongXia Chen , Hao Zhou , Changwei Zhang , Wenjun Li , Xingying Xue , ChengZhang Wang","doi":"10.1016/j.enzmictec.2024.110440","DOIUrl":null,"url":null,"abstract":"<div><p>The manufacturing of indigo naturalis requires prolonged leaf soaking and lime stirring; the resulting indigo purity is less than 3.00% and the yield of indigo (measured in stems and leaves weight) is less than 0.50%, making it unsuitable for use in industrial procedures like printing and dyeing. An enzymatic method of creating indigo without the requirement for lime was investigated in order to generate high purity indigo. Single factor tests were performed to optimize the enzymatic preparation conditions. The findings showed that 60 °C, pH 5.5, 200 mL of leaves extract containing 0.45 mg/mL indican, and a 4:1 ratio of the acidic cellulose (activity: 9000 U/mL, liquid) to indican were the ideal parameters for enzymatic preparation. The yield of indigo was 40.32%, and the contents of indigo and indirubin were 37.37% and 2.30%, respectively. MALDI-TOF-MS in positive ion mode and UPLC-Q-TOF-MS in both positive and negative ion modes were used to analyze indigo extracts from <em>Baphicacanthus cusia</em>(Nees) Bremek by enzymatic preparation. It has been discovered that 13 alkaloids, 5 organic acids, 3 terpenoids, 3 steroids, 2 flavones, and 7 other compounds are present in indigo extracts. The presence of the indigo, indirubin, isorhamnetin, tryptanthrin, indigodole B, and indigodole C determined by UPLC-Q-TOF-MS was verified by MALDI-TOF-MS analysis. The enzymatic preparation of indigo extracts kept the same chemical makeup as conventional indigo naturalis. Thermal analysis and SEM morphology were used to confirm that there was no lime in the indigo extract. During the enzymatic process, <em>Baphicacanthus cusia</em> (Nees) Bremek was employed more effectively, increasing the yield and purity of indigo.</p></div>","PeriodicalId":11770,"journal":{"name":"Enzyme and Microbial Technology","volume":"178 ","pages":"Article 110440"},"PeriodicalIF":3.4000,"publicationDate":"2024-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Enzyme and Microbial Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141022924000474","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The manufacturing of indigo naturalis requires prolonged leaf soaking and lime stirring; the resulting indigo purity is less than 3.00% and the yield of indigo (measured in stems and leaves weight) is less than 0.50%, making it unsuitable for use in industrial procedures like printing and dyeing. An enzymatic method of creating indigo without the requirement for lime was investigated in order to generate high purity indigo. Single factor tests were performed to optimize the enzymatic preparation conditions. The findings showed that 60 °C, pH 5.5, 200 mL of leaves extract containing 0.45 mg/mL indican, and a 4:1 ratio of the acidic cellulose (activity: 9000 U/mL, liquid) to indican were the ideal parameters for enzymatic preparation. The yield of indigo was 40.32%, and the contents of indigo and indirubin were 37.37% and 2.30%, respectively. MALDI-TOF-MS in positive ion mode and UPLC-Q-TOF-MS in both positive and negative ion modes were used to analyze indigo extracts from Baphicacanthus cusia(Nees) Bremek by enzymatic preparation. It has been discovered that 13 alkaloids, 5 organic acids, 3 terpenoids, 3 steroids, 2 flavones, and 7 other compounds are present in indigo extracts. The presence of the indigo, indirubin, isorhamnetin, tryptanthrin, indigodole B, and indigodole C determined by UPLC-Q-TOF-MS was verified by MALDI-TOF-MS analysis. The enzymatic preparation of indigo extracts kept the same chemical makeup as conventional indigo naturalis. Thermal analysis and SEM morphology were used to confirm that there was no lime in the indigo extract. During the enzymatic process, Baphicacanthus cusia (Nees) Bremek was employed more effectively, increasing the yield and purity of indigo.
期刊介绍:
Enzyme and Microbial Technology is an international, peer-reviewed journal publishing original research and reviews, of biotechnological significance and novelty, on basic and applied aspects of the science and technology of processes involving the use of enzymes, micro-organisms, animal cells and plant cells.
We especially encourage submissions on:
Biocatalysis and the use of Directed Evolution in Synthetic Biology and Biotechnology
Biotechnological Production of New Bioactive Molecules, Biomaterials, Biopharmaceuticals, and Biofuels
New Imaging Techniques and Biosensors, especially as applicable to Healthcare and Systems Biology
New Biotechnological Approaches in Genomics, Proteomics and Metabolomics
Metabolic Engineering, Biomolecular Engineering and Nanobiotechnology
Manuscripts which report isolation, purification, immobilization or utilization of organisms or enzymes which are already well-described in the literature are not suitable for publication in EMT, unless their primary purpose is to report significant new findings or approaches which are of broad biotechnological importance. Similarly, manuscripts which report optimization studies on well-established processes are inappropriate. EMT does not accept papers dealing with mathematical modeling unless they report significant, new experimental data.