M. Porkodi , Manoj P. Brahmane , Mujahidkhan A. Pathan , Nalini Poojary , Shubra Singh , M. Harshavarthini , N.S. Nagpure
{"title":"Indigo dyes: Toxicity, teratogenicity, and genotoxicity studies in zebrafish embryos","authors":"M. Porkodi , Manoj P. Brahmane , Mujahidkhan A. Pathan , Nalini Poojary , Shubra Singh , M. Harshavarthini , N.S. Nagpure","doi":"10.1016/j.mrgentox.2024.503752","DOIUrl":null,"url":null,"abstract":"<div><p>Wastewater released by textile dyeing industries is a major source of pollution. Untreated wastewater released from indigo dyeing operations affects aquatic ecosystems and threatens their biodiversity. We have assessed the toxicity of natural and synthetic indigo dye in zebrafish embryos, using the endpoints of teratogenicity, genotoxicity, and histopathology. The zebrafish embryo toxicity test (ZFET) was conducted, exposing embryos to ten concentrations of natural and synthetic indigo dyes; the 96-hour LC<sub>50</sub> values were approximately 350 and 300 mg/L, respectively. Both dyes were teratogenic, causing egg coagulation, tail detachment, yolk sac edema, pericardial edema, and tail bend, with no significant difference in effects between the natural and synthetic dyes. Both dyes were genotoxic (using comet assay for DNA damage). Real-time RT-PCR studies showed upregulation of the DNA-repair genes FEN1 and ERCC1. Severe histological changes were seen in zebrafish larvae following exposure to the dyes. Our results show that indigo dyes may be teratogenic and genotoxic to aquatic organisms, underscoring the need for development of sustainable practices and policies for mitigating the environmental impacts of textile dyeing.</p></div>","PeriodicalId":18799,"journal":{"name":"Mutation research. Genetic toxicology and environmental mutagenesis","volume":"896 ","pages":"Article 503752"},"PeriodicalIF":2.3000,"publicationDate":"2024-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mutation research. Genetic toxicology and environmental mutagenesis","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1383571824000287","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Wastewater released by textile dyeing industries is a major source of pollution. Untreated wastewater released from indigo dyeing operations affects aquatic ecosystems and threatens their biodiversity. We have assessed the toxicity of natural and synthetic indigo dye in zebrafish embryos, using the endpoints of teratogenicity, genotoxicity, and histopathology. The zebrafish embryo toxicity test (ZFET) was conducted, exposing embryos to ten concentrations of natural and synthetic indigo dyes; the 96-hour LC50 values were approximately 350 and 300 mg/L, respectively. Both dyes were teratogenic, causing egg coagulation, tail detachment, yolk sac edema, pericardial edema, and tail bend, with no significant difference in effects between the natural and synthetic dyes. Both dyes were genotoxic (using comet assay for DNA damage). Real-time RT-PCR studies showed upregulation of the DNA-repair genes FEN1 and ERCC1. Severe histological changes were seen in zebrafish larvae following exposure to the dyes. Our results show that indigo dyes may be teratogenic and genotoxic to aquatic organisms, underscoring the need for development of sustainable practices and policies for mitigating the environmental impacts of textile dyeing.
期刊介绍:
Mutation Research - Genetic Toxicology and Environmental Mutagenesis (MRGTEM) publishes papers advancing knowledge in the field of genetic toxicology. Papers are welcomed in the following areas:
New developments in genotoxicity testing of chemical agents (e.g. improvements in methodology of assay systems and interpretation of results).
Alternatives to and refinement of the use of animals in genotoxicity testing.
Nano-genotoxicology, the study of genotoxicity hazards and risks related to novel man-made nanomaterials.
Studies of epigenetic changes in relation to genotoxic effects.
The use of structure-activity relationships in predicting genotoxic effects.
The isolation and chemical characterization of novel environmental mutagens.
The measurement of genotoxic effects in human populations, when accompanied by quantitative measurements of environmental or occupational exposures.
The application of novel technologies for assessing the hazard and risks associated with genotoxic substances (e.g. OMICS or other high-throughput approaches to genotoxicity testing).
MRGTEM is now accepting submissions for a new section of the journal: Current Topics in Genotoxicity Testing, that will be dedicated to the discussion of current issues relating to design, interpretation and strategic use of genotoxicity tests. This section is envisaged to include discussions relating to the development of new international testing guidelines, but also to wider topics in the field. The evaluation of contrasting or opposing viewpoints is welcomed as long as the presentation is in accordance with the journal''s aims, scope, and policies.