NGPCA: Clustering of high-dimensional and non-stationary data streams

IF 1.3 Q3 COMPUTER SCIENCE, SOFTWARE ENGINEERING
Nico Migenda , Ralf Möller , Wolfram Schenck
{"title":"NGPCA: Clustering of high-dimensional and non-stationary data streams","authors":"Nico Migenda ,&nbsp;Ralf Möller ,&nbsp;Wolfram Schenck","doi":"10.1016/j.simpa.2024.100635","DOIUrl":null,"url":null,"abstract":"<div><p>Neural Gas Principal Component Analysis (NGPCA) is an online clustering algorithm. An NGPCA model is a mixture of local PCA units and combines dimensionality reduction with vector quantization. Recently, NGPCA has been extended with an adaptive learning rate and an adaptive potential function for accurate and efficient clustering of high-dimensional and non-stationary data streams. The algorithm achieved highly competitive results on clustering benchmark datasets compared to the state of the art. Our implementation of the algorithm was developed in MATLAB and is available as open source. This code can be easily applied to the clustering of stationary and non-stationary data.</p></div>","PeriodicalId":29771,"journal":{"name":"Software Impacts","volume":"20 ","pages":"Article 100635"},"PeriodicalIF":1.3000,"publicationDate":"2024-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S266596382400023X/pdfft?md5=6784f267af3874ee2a02d381441cd5f4&pid=1-s2.0-S266596382400023X-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Software Impacts","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S266596382400023X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Neural Gas Principal Component Analysis (NGPCA) is an online clustering algorithm. An NGPCA model is a mixture of local PCA units and combines dimensionality reduction with vector quantization. Recently, NGPCA has been extended with an adaptive learning rate and an adaptive potential function for accurate and efficient clustering of high-dimensional and non-stationary data streams. The algorithm achieved highly competitive results on clustering benchmark datasets compared to the state of the art. Our implementation of the algorithm was developed in MATLAB and is available as open source. This code can be easily applied to the clustering of stationary and non-stationary data.

NGPCA:高维非稳态数据流聚类
神经气体主成分分析(NGPCA)是一种在线聚类算法。NGPCA 模型是局部 PCA 单元的混合物,将降维与向量量化相结合。最近,NGPCA 通过自适应学习率和自适应势函数进行了扩展,可对高维和非稳态数据流进行精确高效的聚类。与现有技术相比,该算法在聚类基准数据集上取得了极具竞争力的结果。我们在 MATLAB 中开发了该算法的实现,并将其作为开放源代码提供。该代码可轻松应用于静态和非静态数据的聚类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Software Impacts
Software Impacts Software
CiteScore
2.70
自引率
9.50%
发文量
0
审稿时长
16 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信