Generative Architecture for Data Imputation in Secure Blockchain-Enabled Spatiotemporal Data Management

IF 0.7 4区 计算机科学 Q4 COMPUTER SCIENCE, SOFTWARE ENGINEERING
Song Li;WenFen Liu;Yan Wu;Jie Zhao
{"title":"Generative Architecture for Data Imputation in Secure Blockchain-Enabled Spatiotemporal Data Management","authors":"Song Li;WenFen Liu;Yan Wu;Jie Zhao","doi":"10.13052/jwe1540-9589.2315","DOIUrl":null,"url":null,"abstract":"In the era of big data, one of the most critical challenges is ensuring secure access, retrieval, and sharing of linked spatiotemporal data. To address this challenge, this paper introduces a groundbreaking blockchain-enabled evolutionary indirect feedback graph algorithm for the secure management of interconnected spatiotemporal datasets. The algorithm utilizes a generative neural network model for data imputation, predicting and generating plausible values to improve dataset completeness and integrity. The core architecture utilizes blockchain technology to optimize data retrieval efficiency and uphold robust access control mechanisms. The algorithm incorporates indirect feedback mechanisms, allowing users to provide implicit feedback through their interactions, enhancing the relevance and efficiency of data retrieval. In addition. sophisticated graph-based techniques are used to model intricate relationships between data entities, facilitating seamless data retrieval and sharing in interwoven datasets. The algorithm's data security approach includes comprehensive access control mechanisms, encryption, and authentication mechanisms, safeguarding data confidentiality and integrity. Extensive evaluations show significant enhancements in retrieval performance and access control precision, making the proposed model a promising solution for the secure management of expansive interconnected spatiotemporal data.","PeriodicalId":49952,"journal":{"name":"Journal of Web Engineering","volume":"23 1","pages":"111-163"},"PeriodicalIF":0.7000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10488442","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Web Engineering","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10488442/","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

In the era of big data, one of the most critical challenges is ensuring secure access, retrieval, and sharing of linked spatiotemporal data. To address this challenge, this paper introduces a groundbreaking blockchain-enabled evolutionary indirect feedback graph algorithm for the secure management of interconnected spatiotemporal datasets. The algorithm utilizes a generative neural network model for data imputation, predicting and generating plausible values to improve dataset completeness and integrity. The core architecture utilizes blockchain technology to optimize data retrieval efficiency and uphold robust access control mechanisms. The algorithm incorporates indirect feedback mechanisms, allowing users to provide implicit feedback through their interactions, enhancing the relevance and efficiency of data retrieval. In addition. sophisticated graph-based techniques are used to model intricate relationships between data entities, facilitating seamless data retrieval and sharing in interwoven datasets. The algorithm's data security approach includes comprehensive access control mechanisms, encryption, and authentication mechanisms, safeguarding data confidentiality and integrity. Extensive evaluations show significant enhancements in retrieval performance and access control precision, making the proposed model a promising solution for the secure management of expansive interconnected spatiotemporal data.
安全区块链时空数据管理中的数据推算生成架构
在大数据时代,最关键的挑战之一是确保安全访问、检索和共享链接的时空数据。为应对这一挑战,本文介绍了一种突破性的区块链进化间接反馈图算法,用于安全管理相互关联的时空数据集。该算法利用生成式神经网络模型进行数据估算、预测和生成可信值,以提高数据集的完整性和完整性。核心架构利用区块链技术优化数据检索效率,并维护稳健的访问控制机制。该算法采用间接反馈机制,允许用户通过互动提供隐式反馈,从而提高数据检索的相关性和效率。此外,该算法还采用了复杂的基于图的技术来模拟数据实体之间错综复杂的关系,从而促进交织数据集的无缝数据检索和共享。该算法的数据安全方法包括全面的访问控制机制、加密和认证机制,以保障数据的机密性和完整性。广泛的评估表明,该算法在检索性能和访问控制精确度方面都有显著提高,使其成为安全管理大量相互关联的时空数据的理想解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Web Engineering
Journal of Web Engineering 工程技术-计算机:理论方法
CiteScore
1.80
自引率
12.50%
发文量
62
审稿时长
9 months
期刊介绍: The World Wide Web and its associated technologies have become a major implementation and delivery platform for a large variety of applications, ranging from simple institutional information Web sites to sophisticated supply-chain management systems, financial applications, e-government, distance learning, and entertainment, among others. Such applications, in addition to their intrinsic functionality, also exhibit the more complex behavior of distributed applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信