{"title":"Parts in k-indivisible partitions always display biases between residue classes","authors":"Faye Jackson , Misheel Otgonbayar","doi":"10.1016/j.jnt.2024.02.003","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span><math><mi>k</mi><mo>,</mo><mi>t</mi></math></span> be coprime integers, and let <span><math><mn>1</mn><mo>≤</mo><mi>r</mi><mo>≤</mo><mi>t</mi></math></span>. We let <span><math><msubsup><mrow><mi>D</mi></mrow><mrow><mi>k</mi></mrow><mrow><mo>×</mo></mrow></msubsup><mo>(</mo><mi>r</mi><mo>,</mo><mi>t</mi><mo>;</mo><mi>n</mi><mo>)</mo></math></span> denote the total number of parts among all <em>k</em>-indivisible partitions (i.e., those partitions where no part is divisible by <em>k</em>) of <em>n</em> which are congruent to <em>r</em> modulo <em>t</em>. In previous work of the authors <span>[3]</span>, an asymptotic estimate for <span><math><msubsup><mrow><mi>D</mi></mrow><mrow><mi>k</mi></mrow><mrow><mo>×</mo></mrow></msubsup><mo>(</mo><mi>r</mi><mo>,</mo><mi>t</mi><mo>;</mo><mi>n</mi><mo>)</mo></math></span> was shown to exhibit unpredictable biases between congruence classes. In the present paper, we confirm our earlier conjecture in <span>[3]</span> that there are no “ties” (i.e., equalities) in this asymptotic for different congruence classes. To obtain this result, we reframe this question in terms of <em>L</em>-functions, and we then employ a nonvanishing result due to Baker, Birch, and Wirsing <span>[1]</span> to conclude that there is always a bias towards one congruence class or another modulo <em>t</em> among all parts in <em>k</em>-indivisible partitions of <em>n</em> as <em>n</em> becomes large.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022314X24000556","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Let be coprime integers, and let . We let denote the total number of parts among all k-indivisible partitions (i.e., those partitions where no part is divisible by k) of n which are congruent to r modulo t. In previous work of the authors [3], an asymptotic estimate for was shown to exhibit unpredictable biases between congruence classes. In the present paper, we confirm our earlier conjecture in [3] that there are no “ties” (i.e., equalities) in this asymptotic for different congruence classes. To obtain this result, we reframe this question in terms of L-functions, and we then employ a nonvanishing result due to Baker, Birch, and Wirsing [1] to conclude that there is always a bias towards one congruence class or another modulo t among all parts in k-indivisible partitions of n as n becomes large.
设 k,t 为同余整数,且设 1≤r≤t 为同余整数。我们让 Dk×(r,t;n) 表示 n 的所有 k 不可分割分区(即没有任何部分被 k 整除的分区)中与 r modulo t 全等的部分总数。在作者之前的研究 [3] 中,Dk×(r,t;n)的渐近估计值在全等类之间表现出不可预测的偏差。在本文中,我们证实了早先在 [3] 中的猜想,即对于不同的全等类,该渐近估计值中不存在 "纽带"(即相等)。为了得到这个结果,我们用 L 函数来重构这个问题,然后利用贝克、伯奇和韦辛[1]的一个非消失结果,得出结论:当 n 变大时,在 n 的 k 个不可分割部分中的所有部分中,总是偏向于一个同余类或另一个同余类 modulo t。