A novel HPL-AI approach for FP16-only accelerator and its instantiation on Kunpeng+Ascend AI-specific platform

IF 3.4 3区 计算机科学 Q1 COMPUTER SCIENCE, THEORY & METHODS
Zijian Cao , Qiao Sun , Wenhao Yang , Changcheng Song , Zhe Wang , Huiyuan Li
{"title":"A novel HPL-AI approach for FP16-only accelerator and its instantiation on Kunpeng+Ascend AI-specific platform","authors":"Zijian Cao ,&nbsp;Qiao Sun ,&nbsp;Wenhao Yang ,&nbsp;Changcheng Song ,&nbsp;Zhe Wang ,&nbsp;Huiyuan Li","doi":"10.1016/j.jpdc.2024.104884","DOIUrl":null,"url":null,"abstract":"<div><p>HPL-AI, also known as HPL-MxP, is a new benchmark program used to evaluate the upper-bound performance of AI-related tasks on a specific computing cluster. It solves a large linear equation system in FP64, preconditioned by complete LU factorization in lower precision. In this paper, we propose a new HPL-AI approach that relies on the factorization of the coefficient matrix in mixed precision: FP32 diagonals and FP16 off-diagonals. Without compromising the quality of the resultant LU preconditioner, the proposed approach only utilizes the primitive of dense matrix multiplication in FP16 on the accelerator, maximizing the FP16 throughput. Numerical analysis and experiments validate our approach, ensuring avoidance of numerical underflow or overflow during factorization. We implement the proposed approach on Kunpeng+Ascend clusters, a novel AI-specific platform with exceedingly high FP16 peak performance. By applying various optimization techniques, including 2D lookahead, HCCL-based communication pipeline, and SYCL-based tasks overlapping, we achieve 975 TFlops on a single node and nearly 100 PFlops on a cluster of 128 nodes, with a weak scalability of 79.8%.</p></div>","PeriodicalId":54775,"journal":{"name":"Journal of Parallel and Distributed Computing","volume":"190 ","pages":"Article 104884"},"PeriodicalIF":3.4000,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Parallel and Distributed Computing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0743731524000480","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

HPL-AI, also known as HPL-MxP, is a new benchmark program used to evaluate the upper-bound performance of AI-related tasks on a specific computing cluster. It solves a large linear equation system in FP64, preconditioned by complete LU factorization in lower precision. In this paper, we propose a new HPL-AI approach that relies on the factorization of the coefficient matrix in mixed precision: FP32 diagonals and FP16 off-diagonals. Without compromising the quality of the resultant LU preconditioner, the proposed approach only utilizes the primitive of dense matrix multiplication in FP16 on the accelerator, maximizing the FP16 throughput. Numerical analysis and experiments validate our approach, ensuring avoidance of numerical underflow or overflow during factorization. We implement the proposed approach on Kunpeng+Ascend clusters, a novel AI-specific platform with exceedingly high FP16 peak performance. By applying various optimization techniques, including 2D lookahead, HCCL-based communication pipeline, and SYCL-based tasks overlapping, we achieve 975 TFlops on a single node and nearly 100 PFlops on a cluster of 128 nodes, with a weak scalability of 79.8%.

适用于 FP16 加速器的新型 HPL-AI 方法及其在 Kunpeng+Ascend AI 专用平台上的实例化
HPL-AI 也称为 HPL-MxP,是一个新的基准程序,用于评估特定计算集群上人工智能相关任务的上限性能。它以 FP64 解大型线性方程组,并以低精度的完整 LU 因式分解为前提条件。在本文中,我们提出了一种新的 HPL-AI 方法,该方法依赖于系数矩阵的混合精度因式分解:FP32 对角线和 FP16 非对角线。在不影响 LU 预处理结果质量的前提下,所提出的方法只利用了加速器上 FP16 密集矩阵乘法的基元,从而最大限度地提高了 FP16 吞吐量。数值分析和实验验证了我们的方法,确保在因式分解过程中避免数值下溢或溢出。我们在鲲鹏+Ascend 集群上实现了所提出的方法,这是一种新颖的人工智能专用平台,具有超高的 FP16 峰值性能。通过应用各种优化技术,包括 2D lookahead、基于 HCCL 的通信管道和基于 SYCL 的任务重叠,我们在单节点上实现了 975 TFlops,在 128 节点的集群上实现了近 100 PFlops,弱可扩展性达到 79.8%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Parallel and Distributed Computing
Journal of Parallel and Distributed Computing 工程技术-计算机:理论方法
CiteScore
10.30
自引率
2.60%
发文量
172
审稿时长
12 months
期刊介绍: This international journal is directed to researchers, engineers, educators, managers, programmers, and users of computers who have particular interests in parallel processing and/or distributed computing. The Journal of Parallel and Distributed Computing publishes original research papers and timely review articles on the theory, design, evaluation, and use of parallel and/or distributed computing systems. The journal also features special issues on these topics; again covering the full range from the design to the use of our targeted systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信