{"title":"Optimization of EWOC principle in BLRM design for phase 1 oncology trials.","authors":"Xiaohan Guo, Sean Kent, Arnab Maity, Wei Zhong","doi":"10.1080/10543406.2024.2333530","DOIUrl":null,"url":null,"abstract":"<p><p>Bayesian logistic regression model (BLRM) is widely used to guide dose escalation decisions in phase 1 oncology trials. An important feature of BLRM design is the appealing safety performance due to its escalation with overdose control (EWOC). However, some recent literature indicates that BLRM with EWOC may have a relatively low probability to find the maximum tolerated dose (MTD) compared to some other dose escalation designs. This work discusses this design problem and proposes a practical solution to improve the performance of BLRM design. Specifically, we suggest increasing the EWOC cutoff from routine value 0.25 to a value between 0.3 and 0.4, which will increase the chance of finding the correct MTD with minimal compromise to overdosing risk. Our comparative simulation studies indicate that BLRM with an increased EWOC cutoff has comparable operating characteristics on the correct MTD selection and over-toxicity control as other dose escalation designs (BOIN, mTPI, keyboard, etc.). Moreover, we compare the methodology and operating characteristics of BLRM designs with various decision rules that allow more flexible overdosing control. A case study of dose escalation in a recent phase 1 oncology trial is provided to show how BLRM with optimal EWOC cutoff operates well in practice.</p>","PeriodicalId":54870,"journal":{"name":"Journal of Biopharmaceutical Statistics","volume":" ","pages":"407-423"},"PeriodicalIF":1.2000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biopharmaceutical Statistics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/10543406.2024.2333530","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/4/1 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Bayesian logistic regression model (BLRM) is widely used to guide dose escalation decisions in phase 1 oncology trials. An important feature of BLRM design is the appealing safety performance due to its escalation with overdose control (EWOC). However, some recent literature indicates that BLRM with EWOC may have a relatively low probability to find the maximum tolerated dose (MTD) compared to some other dose escalation designs. This work discusses this design problem and proposes a practical solution to improve the performance of BLRM design. Specifically, we suggest increasing the EWOC cutoff from routine value 0.25 to a value between 0.3 and 0.4, which will increase the chance of finding the correct MTD with minimal compromise to overdosing risk. Our comparative simulation studies indicate that BLRM with an increased EWOC cutoff has comparable operating characteristics on the correct MTD selection and over-toxicity control as other dose escalation designs (BOIN, mTPI, keyboard, etc.). Moreover, we compare the methodology and operating characteristics of BLRM designs with various decision rules that allow more flexible overdosing control. A case study of dose escalation in a recent phase 1 oncology trial is provided to show how BLRM with optimal EWOC cutoff operates well in practice.
期刊介绍:
The Journal of Biopharmaceutical Statistics, a rapid publication journal, discusses quality applications of statistics in biopharmaceutical research and development. Now publishing six times per year, it includes expositions of statistical methodology with immediate applicability to biopharmaceutical research in the form of full-length and short manuscripts, review articles, selected/invited conference papers, short articles, and letters to the editor. Addressing timely and provocative topics important to the biostatistical profession, the journal covers:
Drug, device, and biological research and development;
Drug screening and drug design;
Assessment of pharmacological activity;
Pharmaceutical formulation and scale-up;
Preclinical safety assessment;
Bioavailability, bioequivalence, and pharmacokinetics;
Phase, I, II, and III clinical development including complex innovative designs;
Premarket approval assessment of clinical safety;
Postmarketing surveillance;
Big data and artificial intelligence and applications.