Thomas Minotto, Philippe A Robert, Ingrid Hobæk Haff, Geir K Sandve
{"title":"Assessing the feasibility of statistical inference using synthetic antibody-antigen datasets.","authors":"Thomas Minotto, Philippe A Robert, Ingrid Hobæk Haff, Geir K Sandve","doi":"10.1515/sagmb-2023-0027","DOIUrl":null,"url":null,"abstract":"<p><p>Simulation frameworks are useful to stress-test predictive models when data is scarce, or to assert model sensitivity to specific data distributions. Such frameworks often need to recapitulate several layers of data complexity, including emergent properties that arise implicitly from the interaction between simulation components. Antibody-antigen binding is a complex mechanism by which an antibody sequence wraps itself around an antigen with high affinity. In this study, we use a synthetic simulation framework for antibody-antigen folding and binding on a 3D lattice that include full details on the spatial conformation of both molecules. We investigate how emergent properties arise in this framework, in particular the physical proximity of amino acids, their presence on the binding interface, or the binding status of a sequence, and relate that to the individual and pairwise contributions of amino acids in statistical models for binding prediction. We show that weights learnt from a simple logistic regression model align with some but not all features of amino acids involved in the binding, and that predictive sequence binding patterns can be enriched. In particular, main effects correlated with the capacity of a sequence to bind any antigen, while statistical interactions were related to sequence specificity.</p>","PeriodicalId":49477,"journal":{"name":"Statistical Applications in Genetics and Molecular Biology","volume":"23 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Applications in Genetics and Molecular Biology","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/sagmb-2023-0027","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0
Abstract
Simulation frameworks are useful to stress-test predictive models when data is scarce, or to assert model sensitivity to specific data distributions. Such frameworks often need to recapitulate several layers of data complexity, including emergent properties that arise implicitly from the interaction between simulation components. Antibody-antigen binding is a complex mechanism by which an antibody sequence wraps itself around an antigen with high affinity. In this study, we use a synthetic simulation framework for antibody-antigen folding and binding on a 3D lattice that include full details on the spatial conformation of both molecules. We investigate how emergent properties arise in this framework, in particular the physical proximity of amino acids, their presence on the binding interface, or the binding status of a sequence, and relate that to the individual and pairwise contributions of amino acids in statistical models for binding prediction. We show that weights learnt from a simple logistic regression model align with some but not all features of amino acids involved in the binding, and that predictive sequence binding patterns can be enriched. In particular, main effects correlated with the capacity of a sequence to bind any antigen, while statistical interactions were related to sequence specificity.
期刊介绍:
Statistical Applications in Genetics and Molecular Biology seeks to publish significant research on the application of statistical ideas to problems arising from computational biology. The focus of the papers should be on the relevant statistical issues but should contain a succinct description of the relevant biological problem being considered. The range of topics is wide and will include topics such as linkage mapping, association studies, gene finding and sequence alignment, protein structure prediction, design and analysis of microarray data, molecular evolution and phylogenetic trees, DNA topology, and data base search strategies. Both original research and review articles will be warmly received.