{"title":"Immunocytochemical localization of nitric oxide synthase-containing neurons in the visual cortex of the Mongolian gerbil.","authors":"Xin-Yu Kuai, Gwang-Jin Jeong, Chang-Jin Jeon","doi":"10.5603/fhc.99227","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Nitric oxide (NO) is present in various cell types in the central nervous system and plays a crucial role in the control of various cellular functions. The diurnal Mongolian gerbil is a member of the rodent family Muridae that exhibits unique physiological, anatomical, and behavioral differences from the nocturnal rat and mouse, which render it a useful model for studying the visual system. The purpose of this study was to confirm the distribution and morphology of neurons that contain nitric oxide synthase (NOS) and their pattern of co-expressing NOS with neuropeptide Y (NPY), somatostatin (SST), and gamma-aminobutyric acid (GABA) in the visual cortex of Mongolian gerbils.</p><p><strong>Materials and methods: </strong>Mongolian gerbils were used in the study. We confirmed the localization of NOS in the visual cortex of Mongolian gerbils using horseradish peroxidase immunocytochemistry, fluorescent immunocytochemistry, and conventional confocal microscopy.</p><p><strong>Results: </strong>NOS-immunoreactive (IR) neurons were present in all layers of the visual cortex of the Mongolian gerbil, with the exception of layer I, with the highest density observed in layer V (50.00%). The predominant type of NOS-IR neurons was multipolar round/oval cells (60.96%). Two-color immunofluorescence revealed that 100% NOS-IR neurons were co-labeled with NPY and SST and 34.55% were co-labeled with GABA.</p><p><strong>Conclusions: </strong>Our findings of the laminar distribution and morphological characteristics of NOS-IR neurons, as well as the colocalization patterns of NOS-IR neurons with NPY, SST, and GABA, indicated the presence of species-specific differences, suggesting the functional diversity of NO in the visual cortex. This study provides valuable data on the anatomical organization of NOS-IR neurons and, consequently, a better understanding of the functional aspects of NO and species diversity.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.5603/fhc.99227","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/4/2 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: Nitric oxide (NO) is present in various cell types in the central nervous system and plays a crucial role in the control of various cellular functions. The diurnal Mongolian gerbil is a member of the rodent family Muridae that exhibits unique physiological, anatomical, and behavioral differences from the nocturnal rat and mouse, which render it a useful model for studying the visual system. The purpose of this study was to confirm the distribution and morphology of neurons that contain nitric oxide synthase (NOS) and their pattern of co-expressing NOS with neuropeptide Y (NPY), somatostatin (SST), and gamma-aminobutyric acid (GABA) in the visual cortex of Mongolian gerbils.
Materials and methods: Mongolian gerbils were used in the study. We confirmed the localization of NOS in the visual cortex of Mongolian gerbils using horseradish peroxidase immunocytochemistry, fluorescent immunocytochemistry, and conventional confocal microscopy.
Results: NOS-immunoreactive (IR) neurons were present in all layers of the visual cortex of the Mongolian gerbil, with the exception of layer I, with the highest density observed in layer V (50.00%). The predominant type of NOS-IR neurons was multipolar round/oval cells (60.96%). Two-color immunofluorescence revealed that 100% NOS-IR neurons were co-labeled with NPY and SST and 34.55% were co-labeled with GABA.
Conclusions: Our findings of the laminar distribution and morphological characteristics of NOS-IR neurons, as well as the colocalization patterns of NOS-IR neurons with NPY, SST, and GABA, indicated the presence of species-specific differences, suggesting the functional diversity of NO in the visual cortex. This study provides valuable data on the anatomical organization of NOS-IR neurons and, consequently, a better understanding of the functional aspects of NO and species diversity.
简介一氧化氮(NO)存在于中枢神经系统的各种细胞类型中,在控制各种细胞功能方面起着至关重要的作用。昼伏夜出的蒙古沙鼠是啮齿目鼠科的一种成员,在生理、解剖和行为上与夜行性大鼠和小鼠有独特的差异,因此是研究视觉系统的有用模型。本研究的目的是确认蒙古沙鼠视觉皮层中含有一氧化氮合酶(NOS)的神经元的分布和形态,以及它们与神经肽 Y(NPY)、体生长抑素(SST)和γ-氨基丁酸(GABA)共同表达 NOS 的模式:研究对象为蒙古沙鼠。我们使用辣根过氧化物酶免疫细胞化学、荧光免疫细胞化学和传统共聚焦显微镜确认了 NOS 在蒙古沙鼠视皮层中的定位:除第 I 层外,蒙古沙鼠视皮层各层均存在 NOS 免疫反应(IR)神经元,其中第 V 层的密度最高(50.00%)。NOS-IR神经元的主要类型是多极圆形/卵圆形细胞(60.96%)。双色免疫荧光显示,NOS-IR神经元100%与NPY和SST共标记,34.55%与GABA共标记:我们对NOS-IR神经元的层状分布和形态特征以及NOS-IR神经元与NPY、SST和GABA的共标记模式的研究结果表明,NOS-IR神经元存在物种特异性差异,表明NO在视觉皮层中的功能多样性。这项研究为NOS-IR细胞的解剖组织提供了宝贵的数据,从而有助于更好地理解NO的功能和物种多样性。
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.