Digital application for drug product potency target evaluation in biopharmaceutical manufacturing

IF 2.5 3区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Darrick Shen, Shyam Panjwani, Konstantinos Spetsieris
{"title":"Digital application for drug product potency target evaluation in biopharmaceutical manufacturing","authors":"Darrick Shen,&nbsp;Shyam Panjwani,&nbsp;Konstantinos Spetsieris","doi":"10.1002/btpr.3461","DOIUrl":null,"url":null,"abstract":"<p>Biopharmaceutical manufacturing entails a series of highly regulated steps. The manufacturing of safe and efficacious drug product (DP) requires testing of critical quality attributes (CQAs) against specification limits. DP potency concentration, which measures the dosage strength of a particular DP, is a CQA of great interest. In order to minimize the DP potency out-of-specification (OOS) risk, sterile fill finish (SFF) process adjustments may be needed. Varying the potency targets can be one such process adjustment. To facilitate such evaluation, data acquisition and statistical calculations are required. Regularly conducting the OOS risk assessment manually using commercial statistical software can be tedious, error-prone, and impractical, especially when several alternate potency targets are under consideration. In this work, the development of a novel framework for OOS risk assessment and deployment of cloud-based statistical software application to facilitate the risk assessment are presented. This application is intended to streamline the assessment of alternate potency targets for DP in biologics manufacturing. The major aspects of this potency targeting application development are presented in detail. Specifically, data sources, pipeline, application architecture, back-end and front-end development as well as application verification are discussed. Finally, several use cases are presented to highlight the application's utility in biologics manufacturing.</p>","PeriodicalId":8856,"journal":{"name":"Biotechnology Progress","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/btpr.3461","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology Progress","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/btpr.3461","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Biopharmaceutical manufacturing entails a series of highly regulated steps. The manufacturing of safe and efficacious drug product (DP) requires testing of critical quality attributes (CQAs) against specification limits. DP potency concentration, which measures the dosage strength of a particular DP, is a CQA of great interest. In order to minimize the DP potency out-of-specification (OOS) risk, sterile fill finish (SFF) process adjustments may be needed. Varying the potency targets can be one such process adjustment. To facilitate such evaluation, data acquisition and statistical calculations are required. Regularly conducting the OOS risk assessment manually using commercial statistical software can be tedious, error-prone, and impractical, especially when several alternate potency targets are under consideration. In this work, the development of a novel framework for OOS risk assessment and deployment of cloud-based statistical software application to facilitate the risk assessment are presented. This application is intended to streamline the assessment of alternate potency targets for DP in biologics manufacturing. The major aspects of this potency targeting application development are presented in detail. Specifically, data sources, pipeline, application architecture, back-end and front-end development as well as application verification are discussed. Finally, several use cases are presented to highlight the application's utility in biologics manufacturing.

Abstract Image

生物制药生产中药品效力目标评估的数字化应用。
生物制药生产需要一系列高度规范的步骤。要生产出安全有效的药物产品 (DP),就必须根据规格限值对关键质量属性 (CQA) 进行检测。DP 效力浓度衡量特定 DP 的剂量强度,是一项备受关注的 CQA。为了最大限度地降低制剂效价失常(OOS)风险,可能需要对无菌灌装(SFF)工艺进行调整。改变效价目标就是其中一种工艺调整。为便于进行此类评估,需要进行数据采集和统计计算。定期使用商业统计软件手动进行 OOS 风险评估可能会很繁琐、容易出错,而且不切实际,尤其是在考虑多个替代效价目标的情况下。在这项工作中,介绍了一种新的 OOS 风险评估框架的开发和基于云的统计软件应用程序的部署,以促进风险评估。该应用软件旨在简化生物制剂生产中对 DP 的替代效价目标的评估。详细介绍了效力目标应用开发的主要方面。具体来说,讨论了数据源、管道、应用架构、后端和前端开发以及应用验证。最后,介绍了几个使用案例,以突出该应用在生物制剂生产中的实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biotechnology Progress
Biotechnology Progress 工程技术-生物工程与应用微生物
CiteScore
6.50
自引率
3.40%
发文量
83
审稿时长
4 months
期刊介绍: Biotechnology Progress , an official, bimonthly publication of the American Institute of Chemical Engineers and its technological community, the Society for Biological Engineering, features peer-reviewed research articles, reviews, and descriptions of emerging techniques for the development and design of new processes, products, and devices for the biotechnology, biopharmaceutical and bioprocess industries. Widespread interest includes application of biological and engineering principles in fields such as applied cellular physiology and metabolic engineering, biocatalysis and bioreactor design, bioseparations and downstream processing, cell culture and tissue engineering, biosensors and process control, bioinformatics and systems biology, biomaterials and artificial organs, stem cell biology and genetics, and plant biology and food science. Manuscripts concerning the design of related processes, products, or devices are also encouraged. Four types of manuscripts are printed in the Journal: Research Papers, Topical or Review Papers, Letters to the Editor, and R & D Notes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信