Gita Sarafraz, Armin Behnamnia, Mehran Hosseinzadeh, Ali Balapour, Amin Meghrazi, Hamid R. Rabiee
{"title":"Domain Adaptation and Generalization of Functional Medical Data: A Systematic Survey of Brain Data","authors":"Gita Sarafraz, Armin Behnamnia, Mehran Hosseinzadeh, Ali Balapour, Amin Meghrazi, Hamid R. Rabiee","doi":"10.1145/3654664","DOIUrl":null,"url":null,"abstract":"<p>In spite of the excellent capabilities of machine learning algorithms, their performance deteriorates when the distribution of test data differs from the distribution of training data. In medical data research, this problem is exacerbated by its connection to human health, expensive equipment, and meticulous setups. Consequently, achieving domain generalizations (DG) and domain adaptations (DA) under distribution shifts is an essential step in the analysis of medical data. As the first systematic review of DG and DA on functional brain signals, the paper discusses and categorizes various methods, tasks, and datasets in this field. Moreover, it discusses relevant directions for future research.</p>","PeriodicalId":50926,"journal":{"name":"ACM Computing Surveys","volume":null,"pages":null},"PeriodicalIF":23.8000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Computing Surveys","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3654664","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
In spite of the excellent capabilities of machine learning algorithms, their performance deteriorates when the distribution of test data differs from the distribution of training data. In medical data research, this problem is exacerbated by its connection to human health, expensive equipment, and meticulous setups. Consequently, achieving domain generalizations (DG) and domain adaptations (DA) under distribution shifts is an essential step in the analysis of medical data. As the first systematic review of DG and DA on functional brain signals, the paper discusses and categorizes various methods, tasks, and datasets in this field. Moreover, it discusses relevant directions for future research.
期刊介绍:
ACM Computing Surveys is an academic journal that focuses on publishing surveys and tutorials on various areas of computing research and practice. The journal aims to provide comprehensive and easily understandable articles that guide readers through the literature and help them understand topics outside their specialties. In terms of impact, CSUR has a high reputation with a 2022 Impact Factor of 16.6. It is ranked 3rd out of 111 journals in the field of Computer Science Theory & Methods.
ACM Computing Surveys is indexed and abstracted in various services, including AI2 Semantic Scholar, Baidu, Clarivate/ISI: JCR, CNKI, DeepDyve, DTU, EBSCO: EDS/HOST, and IET Inspec, among others.