{"title":"Selecting intervals to optimize the design of observational studies subject to fine balance constraints","authors":"","doi":"10.1007/s10878-024-01116-y","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>Motivated by designing observational studies using matching methods subject to fine balance constraints, we introduce a new optimization problem. This problem consists of two phases. In the first phase, the goal is to cluster the values of a continuous covariate into a limited number of intervals. In the second phase, we find the optimal matching subject to fine balance constraints with respect to the new covariate we obtained in the first phase. We show that the resulting optimization problem is NP-hard. However, it admits an FPT algorithm with respect to a natural parameter. This FPT algorithm also translates into a polynomial time algorithm for the most natural special cases of the problem.</p>","PeriodicalId":50231,"journal":{"name":"Journal of Combinatorial Optimization","volume":"46 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Optimization","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10878-024-01116-y","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Motivated by designing observational studies using matching methods subject to fine balance constraints, we introduce a new optimization problem. This problem consists of two phases. In the first phase, the goal is to cluster the values of a continuous covariate into a limited number of intervals. In the second phase, we find the optimal matching subject to fine balance constraints with respect to the new covariate we obtained in the first phase. We show that the resulting optimization problem is NP-hard. However, it admits an FPT algorithm with respect to a natural parameter. This FPT algorithm also translates into a polynomial time algorithm for the most natural special cases of the problem.
期刊介绍:
The objective of Journal of Combinatorial Optimization is to advance and promote the theory and applications of combinatorial optimization, which is an area of research at the intersection of applied mathematics, computer science, and operations research and which overlaps with many other areas such as computation complexity, computational biology, VLSI design, communication networks, and management science. It includes complexity analysis and algorithm design for combinatorial optimization problems, numerical experiments and problem discovery with applications in science and engineering.
The Journal of Combinatorial Optimization publishes refereed papers dealing with all theoretical, computational and applied aspects of combinatorial optimization. It also publishes reviews of appropriate books and special issues of journals.