Yuichi Murai, Takahiro Umemura, Hyun Jin Park, Yasufumi Horimoto, Yuji Tasaka
{"title":"Experimental and theoretical fluid dynamics of spherical Savonius turbines operated in pipe flows","authors":"Yuichi Murai, Takahiro Umemura, Hyun Jin Park, Yasufumi Horimoto, Yuji Tasaka","doi":"10.1016/j.jfluidstructs.2024.104105","DOIUrl":null,"url":null,"abstract":"<div><p>The performance of Savonius turbines driven by flow in a pipe is experimentally investigated. The turbine is manufactured to have a spherical outline based on the pipe cross section at a small clearance. The torque and power of the turbine are obtained from the time derivative of the rotational speed measured using a high-speed camera and an equation of rotational motion. We find that the idling tip-speed ratio of the turbine exceeds 5, which is much greater than that of a turbine operating in an open free stream. This proves the dominance of pulsatile flow through the gap between two hemispherical blades in torque generation. Widely varying the gap (i.e., the overlap ratio <em>O<sub>R</sub></em> of the Savonius turbine) reveals that a turbine with <em>O<sub>R</sub></em> = 30 % has the highest power coefficient. The output efficiency exceeds 50 % for a tip-speed ratio of approximately 3. These experimental results are supported by fluid dynamics theory and computational fluid dynamics simulation, which clarify the driving mechanism of the turbine in a pipeline.</p></div>","PeriodicalId":54834,"journal":{"name":"Journal of Fluids and Structures","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fluids and Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0889974624000409","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The performance of Savonius turbines driven by flow in a pipe is experimentally investigated. The turbine is manufactured to have a spherical outline based on the pipe cross section at a small clearance. The torque and power of the turbine are obtained from the time derivative of the rotational speed measured using a high-speed camera and an equation of rotational motion. We find that the idling tip-speed ratio of the turbine exceeds 5, which is much greater than that of a turbine operating in an open free stream. This proves the dominance of pulsatile flow through the gap between two hemispherical blades in torque generation. Widely varying the gap (i.e., the overlap ratio OR of the Savonius turbine) reveals that a turbine with OR = 30 % has the highest power coefficient. The output efficiency exceeds 50 % for a tip-speed ratio of approximately 3. These experimental results are supported by fluid dynamics theory and computational fluid dynamics simulation, which clarify the driving mechanism of the turbine in a pipeline.
期刊介绍:
The Journal of Fluids and Structures serves as a focal point and a forum for the exchange of ideas, for the many kinds of specialists and practitioners concerned with fluid–structure interactions and the dynamics of systems related thereto, in any field. One of its aims is to foster the cross–fertilization of ideas, methods and techniques in the various disciplines involved.
The journal publishes papers that present original and significant contributions on all aspects of the mechanical interactions between fluids and solids, regardless of scale.