Hao Li , Fangguo Zhai , Yujie Dong , Zizhou Liu , Yanzhen Gu , Peng Bai
{"title":"Interannual-decadal variations in the Yellow Sea Cold Water Mass in summer during 1958–2016 using an eddy-resolving hindcast simulation based on OFES2","authors":"Hao Li , Fangguo Zhai , Yujie Dong , Zizhou Liu , Yanzhen Gu , Peng Bai","doi":"10.1016/j.csr.2024.105223","DOIUrl":null,"url":null,"abstract":"<div><p>In the Yellow Sea, a large volume of cold water with temperature below 10 °C exists in the bottom layer in summer and affects the regional circulation, climate and marine ecosystem. Here, we investigated in detail the interannual-decadal variations in the summer Yellow Sea Cold Water Mass (YSCWM) using six decades (1958–2016) of a quasi-global eddy-resolving hindcast simulation, which was validated with observations. Results indicated that volume and mean temperature of the YSCWM were 0.52 × 10<sup>12</sup>–4.10 × 10<sup>12</sup> m<sup>3</sup> (2.22 × 10<sup>12</sup> m<sup>3</sup> on average) and 8.53–9.32 °C (8.94 °C on average). The YSCWM was dominated by interannual-decadal variations with a weakly warming and shrinking trend. The YSCWM volume (mean temperature) had larger (smaller) average values and varied more significantly during the two periods of 1958–1988 and 2005–2016 than during 1989–2004. Interannual-decadal variations in the summer YSCWM agreed with those in February temperature in the Yellow Sea, which were primarily caused by net surface heat flux variations, with a minor but negative contribution from heat exchange with the East China Sea through the northward Yellow Sea warm current and southward coastal currents. Winter net surface heat flux variations were dominated by latent heat flux and sensible heat flux, both of which resulted from combined effects of the Siberia High, Western Pacific pattern and Arctic Oscillation through controlling sea surface wind speed and air temperature over the Yellow Sea. The current study provided a more complete picture and in-depth understanding of changes in the summer YSCWM responding to large-scale climate change and variabilities during the past six decades.</p></div>","PeriodicalId":50618,"journal":{"name":"Continental Shelf Research","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Continental Shelf Research","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0278434324000530","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OCEANOGRAPHY","Score":null,"Total":0}
引用次数: 0
Abstract
In the Yellow Sea, a large volume of cold water with temperature below 10 °C exists in the bottom layer in summer and affects the regional circulation, climate and marine ecosystem. Here, we investigated in detail the interannual-decadal variations in the summer Yellow Sea Cold Water Mass (YSCWM) using six decades (1958–2016) of a quasi-global eddy-resolving hindcast simulation, which was validated with observations. Results indicated that volume and mean temperature of the YSCWM were 0.52 × 1012–4.10 × 1012 m3 (2.22 × 1012 m3 on average) and 8.53–9.32 °C (8.94 °C on average). The YSCWM was dominated by interannual-decadal variations with a weakly warming and shrinking trend. The YSCWM volume (mean temperature) had larger (smaller) average values and varied more significantly during the two periods of 1958–1988 and 2005–2016 than during 1989–2004. Interannual-decadal variations in the summer YSCWM agreed with those in February temperature in the Yellow Sea, which were primarily caused by net surface heat flux variations, with a minor but negative contribution from heat exchange with the East China Sea through the northward Yellow Sea warm current and southward coastal currents. Winter net surface heat flux variations were dominated by latent heat flux and sensible heat flux, both of which resulted from combined effects of the Siberia High, Western Pacific pattern and Arctic Oscillation through controlling sea surface wind speed and air temperature over the Yellow Sea. The current study provided a more complete picture and in-depth understanding of changes in the summer YSCWM responding to large-scale climate change and variabilities during the past six decades.
期刊介绍:
Continental Shelf Research publishes articles dealing with the biological, chemical, geological and physical oceanography of the shallow marine environment, from coastal and estuarine waters out to the shelf break. The continental shelf is a critical environment within the land-ocean continuum, and many processes, functions and problems in the continental shelf are driven by terrestrial inputs transported through the rivers and estuaries to the coastal and continental shelf areas. Manuscripts that deal with these topics must make a clear link to the continental shelf. Examples of research areas include:
Physical sedimentology and geomorphology
Geochemistry of the coastal ocean (inorganic and organic)
Marine environment and anthropogenic effects
Interaction of physical dynamics with natural and manmade shoreline features
Benthic, phytoplankton and zooplankton ecology
Coastal water and sediment quality, and ecosystem health
Benthic-pelagic coupling (physical and biogeochemical)
Interactions between physical dynamics (waves, currents, mixing, etc.) and biogeochemical cycles
Estuarine, coastal and shelf sea modelling and process studies.