Using nanopore sequencing to identify bacterial infection in joint replacements: a preliminary study.

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Hollie Wilkinson, Jamie McDonald, Helen S McCarthy, Jade Perry, Karina Wright, Charlotte Hulme, Paul Cool
{"title":"Using nanopore sequencing to identify bacterial infection in joint replacements: a preliminary study.","authors":"Hollie Wilkinson, Jamie McDonald, Helen S McCarthy, Jade Perry, Karina Wright, Charlotte Hulme, Paul Cool","doi":"10.1093/bfgp/elae008","DOIUrl":null,"url":null,"abstract":"<p><p>This project investigates if third-generation genomic sequencing can be used to identify the species of bacteria causing prosthetic joint infections (PJIs) at the time of revision surgery. Samples of prosthetic fluid were taken during revision surgery from patients with known PJIs. Samples from revision surgeries from non-infected patients acted as negative controls. Genomic sequencing was performed using the MinION device and the rapid sequencing kit from Oxford Nanopore Technologies. Bioinformatic analysis pipelines to identify bacteria included Basic Local Alignment Search Tool, Kraken2 and MinION Detection Software, and the results were compared with standard of care microbiological cultures. Furthermore, there was an attempt to predict antibiotic resistance using computational tools including ResFinder, AMRFinderPlus and Comprehensive Antibiotic Resistance Database. Bacteria identified using microbiological cultures were successfully identified using bioinformatic analysis pipelines. Nanopore sequencing and genomic classification could be completed in the time it takes to perform joint revision surgery (2-3 h). Genomic sequencing in this study was not able to predict antibiotic resistance in this time frame, this is thought to be due to a short-read length and low read depth. It can be concluded that genomic sequencing can be useful to identify bacterial species in infected joint replacements. However, further work is required to investigate if it can be used to predict antibiotic resistance within clinically relevant timeframes.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11428152/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bfgp/elae008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

This project investigates if third-generation genomic sequencing can be used to identify the species of bacteria causing prosthetic joint infections (PJIs) at the time of revision surgery. Samples of prosthetic fluid were taken during revision surgery from patients with known PJIs. Samples from revision surgeries from non-infected patients acted as negative controls. Genomic sequencing was performed using the MinION device and the rapid sequencing kit from Oxford Nanopore Technologies. Bioinformatic analysis pipelines to identify bacteria included Basic Local Alignment Search Tool, Kraken2 and MinION Detection Software, and the results were compared with standard of care microbiological cultures. Furthermore, there was an attempt to predict antibiotic resistance using computational tools including ResFinder, AMRFinderPlus and Comprehensive Antibiotic Resistance Database. Bacteria identified using microbiological cultures were successfully identified using bioinformatic analysis pipelines. Nanopore sequencing and genomic classification could be completed in the time it takes to perform joint revision surgery (2-3 h). Genomic sequencing in this study was not able to predict antibiotic resistance in this time frame, this is thought to be due to a short-read length and low read depth. It can be concluded that genomic sequencing can be useful to identify bacterial species in infected joint replacements. However, further work is required to investigate if it can be used to predict antibiotic resistance within clinically relevant timeframes.

利用纳米孔测序鉴定关节置换术中的细菌感染:一项初步研究。
该项目研究了第三代基因组测序是否可用于鉴定翻修手术时引起假体关节感染(PJI)的细菌种类。在翻修手术期间,从已知患有人工关节感染的患者身上采集了人工关节液样本。非感染患者的翻修手术样本作为阴性对照。使用牛津纳米孔技术公司(Oxford Nanopore Technologies)的 MinION 设备和快速测序试剂盒进行基因组测序。用于鉴定细菌的生物信息学分析管道包括基本局部比对搜索工具、Kraken2 和 MinION 检测软件,并将结果与标准护理微生物培养结果进行比较。此外,还尝试使用 ResFinder、AMRFinderPlus 和抗生素耐药性综合数据库等计算工具预测抗生素耐药性。使用生物信息学分析管道成功鉴定了微生物培养物鉴定出的细菌。纳米孔测序和基因组分类可在进行关节翻修手术(2-3 小时)的时间内完成。本研究中的基因组测序无法在此时间段内预测抗生素耐药性,这被认为是由于短读取长度和低读取深度造成的。由此可以得出结论,基因组测序可用于鉴定受感染关节置换术中的细菌种类。不过,还需要进一步研究基因组测序是否能在临床相关时限内预测抗生素耐药性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信