AI perceives like a local: predicting citizen deprivation perception using satellite imagery

IF 9.1 Q1 ENVIRONMENTAL STUDIES
Angela Abascal, Sabine Vanhuysse, Taïs Grippa, Ignacio Rodriguez-Carreño, Stefanos Georganos, Jiong Wang, Monika Kuffer, Pablo Martinez-Diez, Mar Santamaria-Varas, Eleonore Wolff
{"title":"AI perceives like a local: predicting citizen deprivation perception using satellite imagery","authors":"Angela Abascal, Sabine Vanhuysse, Taïs Grippa, Ignacio Rodriguez-Carreño, Stefanos Georganos, Jiong Wang, Monika Kuffer, Pablo Martinez-Diez, Mar Santamaria-Varas, Eleonore Wolff","doi":"10.1038/s42949-024-00156-x","DOIUrl":null,"url":null,"abstract":"Deprived urban areas, commonly referred to as ‘slums,’ are the consequence of unprecedented urbanisation. Previous studies have highlighted the potential of Artificial Intelligence (AI) and Earth Observation (EO) in capturing physical aspects of urban deprivation. However, little research has explored AI’s ability to predict how locals perceive deprivation. This research aims to develop a method to predict citizens’ perception of deprivation using satellite imagery, citizen science, and AI. A deprivation perception score was computed from slum-citizens’ votes. Then, AI was used to model this score, and results indicate that it can effectively predict perception, with deep learning outperforming conventional machine learning. By leveraging AI and EO, policymakers can comprehend the underlying patterns of urban deprivation, enabling targeted interventions based on citizens’ needs. As over a quarter of the global urban population resides in slums, this tool can help prioritise citizens’ requirements, providing evidence for implementing urban upgrading policies aligned with SDG-11.","PeriodicalId":74322,"journal":{"name":"npj urban sustainability","volume":" ","pages":"1-14"},"PeriodicalIF":9.1000,"publicationDate":"2024-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s42949-024-00156-x.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj urban sustainability","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s42949-024-00156-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL STUDIES","Score":null,"Total":0}
引用次数: 0

Abstract

Deprived urban areas, commonly referred to as ‘slums,’ are the consequence of unprecedented urbanisation. Previous studies have highlighted the potential of Artificial Intelligence (AI) and Earth Observation (EO) in capturing physical aspects of urban deprivation. However, little research has explored AI’s ability to predict how locals perceive deprivation. This research aims to develop a method to predict citizens’ perception of deprivation using satellite imagery, citizen science, and AI. A deprivation perception score was computed from slum-citizens’ votes. Then, AI was used to model this score, and results indicate that it can effectively predict perception, with deep learning outperforming conventional machine learning. By leveraging AI and EO, policymakers can comprehend the underlying patterns of urban deprivation, enabling targeted interventions based on citizens’ needs. As over a quarter of the global urban population resides in slums, this tool can help prioritise citizens’ requirements, providing evidence for implementing urban upgrading policies aligned with SDG-11.

Abstract Image

人工智能像当地人一样感知:利用卫星图像预测公民的匮乏感
城市贫困地区通常被称为 "贫民窟",是前所未有的城市化进程的结果。以往的研究强调了人工智能(AI)和地球观测(EO)在捕捉城市贫困的物理方面的潜力。然而,很少有研究探讨人工智能预测当地人如何看待贫困问题的能力。本研究旨在开发一种方法,利用卫星图像、公民科学和人工智能预测市民的贫困感知。根据贫民窟公民的投票计算出贫困感知分数。然后,利用人工智能对这一分数进行建模,结果表明,人工智能可以有效地预测人们的感知,深度学习的效果优于传统的机器学习。通过利用人工智能和地球观测,决策者可以了解城市贫困的基本模式,从而根据市民的需求采取有针对性的干预措施。由于全球超过四分之一的城市人口居住在贫民窟,该工具有助于优先考虑市民的需求,为实施与可持续发展目标 11 一致的城市升级政策提供依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
10.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信