Evaluating convolutional neural network-enhanced electrocardiography for hypertrophic cardiomyopathy detection in a specialized cardiovascular setting.

IF 1.4 4区 医学 Q3 CARDIAC & CARDIOVASCULAR SYSTEMS
Heart and Vessels Pub Date : 2024-06-01 Epub Date: 2024-03-30 DOI:10.1007/s00380-024-02367-9
Naomi Hirota, Shinya Suzuki, Jun Motogi, Takuya Umemoto, Hiroshi Nakai, Wataru Matsuzawa, Tsuneo Takayanagi, Akira Hyodo, Keiichi Satoh, Takuto Arita, Naoharu Yagi, Mikio Kishi, Hiroaki Semba, Hiroto Kano, Shunsuke Matsuno, Yuko Kato, Takayuki Otsuka, Tokuhisa Uejima, Yuji Oikawa, Takayuki Hori, Minoru Matsuhama, Mitsuru Iida, Junji Yajima, Takeshi Yamashita
{"title":"Evaluating convolutional neural network-enhanced electrocardiography for hypertrophic cardiomyopathy detection in a specialized cardiovascular setting.","authors":"Naomi Hirota, Shinya Suzuki, Jun Motogi, Takuya Umemoto, Hiroshi Nakai, Wataru Matsuzawa, Tsuneo Takayanagi, Akira Hyodo, Keiichi Satoh, Takuto Arita, Naoharu Yagi, Mikio Kishi, Hiroaki Semba, Hiroto Kano, Shunsuke Matsuno, Yuko Kato, Takayuki Otsuka, Tokuhisa Uejima, Yuji Oikawa, Takayuki Hori, Minoru Matsuhama, Mitsuru Iida, Junji Yajima, Takeshi Yamashita","doi":"10.1007/s00380-024-02367-9","DOIUrl":null,"url":null,"abstract":"<p><p>The efficacy of convolutional neural network (CNN)-enhanced electrocardiography (ECG) in detecting hypertrophic cardiomyopathy (HCM) and dilated HCM (dHCM) remains uncertain in real-world applications. This retrospective study analyzed data from 19,170 patients (including 140 HCM or dHCM) in the Shinken Database (2010-2017). We evaluated the sensitivity, positive predictive rate (PPR), and F1 score of CNN-enhanced ECG in a ''basic diagnosis'' model (total disease label) and a ''comprehensive diagnosis'' model (including disease subtypes). Using all-lead ECG in the \"basic diagnosis\" model, we observed a sensitivity of 76%, PPR of 2.9%, and F1 score of 0.056. These metrics improved in cases with a diagnostic probability of ≥ 0.9 and left ventricular hypertrophy (LVH) on ECG: 100% sensitivity, 8.6% PPR, and 0.158 F1 score. The ''comprehensive diagnosis'' model further enhanced these figures to 100%, 13.0%, and 0.230, respectively. Performance was broadly consistent across CNN models using different lead configurations, particularly when including leads viewing the lateral walls. While the precision of CNN models in detecting HCM or dHCM in real-world settings is initially low, it improves by targeting specific patient groups and integrating disease subtype models. The use of ECGs with fewer leads, especially those involving the lateral walls, appears comparably effective.</p>","PeriodicalId":12940,"journal":{"name":"Heart and Vessels","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Heart and Vessels","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00380-024-02367-9","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/30 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

The efficacy of convolutional neural network (CNN)-enhanced electrocardiography (ECG) in detecting hypertrophic cardiomyopathy (HCM) and dilated HCM (dHCM) remains uncertain in real-world applications. This retrospective study analyzed data from 19,170 patients (including 140 HCM or dHCM) in the Shinken Database (2010-2017). We evaluated the sensitivity, positive predictive rate (PPR), and F1 score of CNN-enhanced ECG in a ''basic diagnosis'' model (total disease label) and a ''comprehensive diagnosis'' model (including disease subtypes). Using all-lead ECG in the "basic diagnosis" model, we observed a sensitivity of 76%, PPR of 2.9%, and F1 score of 0.056. These metrics improved in cases with a diagnostic probability of ≥ 0.9 and left ventricular hypertrophy (LVH) on ECG: 100% sensitivity, 8.6% PPR, and 0.158 F1 score. The ''comprehensive diagnosis'' model further enhanced these figures to 100%, 13.0%, and 0.230, respectively. Performance was broadly consistent across CNN models using different lead configurations, particularly when including leads viewing the lateral walls. While the precision of CNN models in detecting HCM or dHCM in real-world settings is initially low, it improves by targeting specific patient groups and integrating disease subtype models. The use of ECGs with fewer leads, especially those involving the lateral walls, appears comparably effective.

评估卷积神经网络增强型心电图在专业心血管环境中用于肥厚型心肌病检测的效果。
卷积神经网络(CNN)增强型心电图(ECG)在实际应用中检测肥厚型心肌病(HCM)和扩张型心肌病(dHCM)的效果仍不确定。这项回顾性研究分析了新研数据库(2010-2017 年)中 19170 例患者(包括 140 例 HCM 或 dHCM)的数据。我们评估了 CNN 增强心电图在 "基本诊断 "模型(总疾病标签)和 "综合诊断 "模型(包括疾病亚型)中的灵敏度、阳性预测率 (PPR) 和 F1 分数。在 "基本诊断 "模型中使用全导联心电图,我们观察到灵敏度为 76%,PPR 为 2.9%,F1 得分为 0.056。在诊断概率≥ 0.9 且心电图显示左心室肥厚(LVH)的病例中,这些指标有所改善:灵敏度为 100%,PPR 为 8.6%,F1 得分为 0.158。综合诊断 "模型进一步将这些数据分别提高到 100%、13.0% 和 0.230。使用不同导联配置的 CNN 模型的性能基本一致,尤其是在包括观察侧壁的导联时。虽然 CNN 模型在实际环境中检测 HCM 或 dHCM 的精确度最初较低,但通过针对特定患者群体和整合疾病亚型模型,精确度有所提高。使用导联较少的心电图,尤其是涉及侧壁的导联,似乎效果相当。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Heart and Vessels
Heart and Vessels 医学-外周血管病
CiteScore
3.10
自引率
13.30%
发文量
211
审稿时长
2 months
期刊介绍: Heart and Vessels is an English-language journal that provides a forum of original ideas, excellent methods, and fascinating techniques on cardiovascular disease fields. All papers submitted for publication are evaluated only with regard to scientific quality and relevance to the heart and vessels. Contributions from those engaged in practical medicine, as well as from those involved in basic research, are welcomed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信