Linear quadratic zero-sum game for time-delayed uncertain stochastic systems

Xin Chen, Yue Yuan, Dongmei Yuan, Yu Shao
{"title":"Linear quadratic zero-sum game for time-delayed uncertain stochastic systems","authors":"Xin Chen, Yue Yuan, Dongmei Yuan, Yu Shao","doi":"10.1002/oca.3123","DOIUrl":null,"url":null,"abstract":"This study focuses on the analysis of a linear quadratic zero-sum game (LQZSG) for time-delayed uncertain stochastic systems. To begin, we introduce a general time-delayed zero-sum game. Employing an algebraic transformation method, we transform the time-delayed zero-sum game into an equivalent uncertain random zero-sum game without time delay. Subsequently, we present equilibrium equations that streamline the transformation of the uncertain random zero-sum game into problems solvable as deterministic difference equations. We then investigate the LQZSG involving a linear time-delayed uncertain stochastic system with a quadratic objective function. Within this framework, we provide a unified framework for solving this type of game and obtaining the analytic expression for the saddle-point equilibrium of the LQZSG. Additionally, we present a numerical example and a counter-terrorism economic game to illustrate the applicability of our findings.","PeriodicalId":501055,"journal":{"name":"Optimal Control Applications and Methods","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optimal Control Applications and Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/oca.3123","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study focuses on the analysis of a linear quadratic zero-sum game (LQZSG) for time-delayed uncertain stochastic systems. To begin, we introduce a general time-delayed zero-sum game. Employing an algebraic transformation method, we transform the time-delayed zero-sum game into an equivalent uncertain random zero-sum game without time delay. Subsequently, we present equilibrium equations that streamline the transformation of the uncertain random zero-sum game into problems solvable as deterministic difference equations. We then investigate the LQZSG involving a linear time-delayed uncertain stochastic system with a quadratic objective function. Within this framework, we provide a unified framework for solving this type of game and obtaining the analytic expression for the saddle-point equilibrium of the LQZSG. Additionally, we present a numerical example and a counter-terrorism economic game to illustrate the applicability of our findings.

Abstract Image

时延不确定随机系统的线性二次零和博弈
本研究的重点是分析时延不确定随机系统的线性二次零和博弈(LQZSG)。首先,我们介绍一般的延时零和博弈。利用代数变换方法,我们将时间延迟零和博弈转换为无时间延迟的等效不确定随机零和博弈。随后,我们提出了均衡方程,将不确定随机零和博弈简化为可作为确定性差分方程求解的问题。然后,我们研究了涉及具有二次目标函数的线性时延不确定随机系统的 LQZSG。在此框架内,我们提供了求解此类博弈的统一框架,并获得了 LQZSG 鞍点均衡的解析表达式。此外,我们还提出了一个数值示例和一个反恐经济博弈,以说明我们研究成果的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信