Giulia C. Fritis, Pavel S. Paz, Luis F. Lozano, Grigori Chapiro
{"title":"On the Riemann Problem for the Foam Displacement in Porous Media with Linear Adsorption","authors":"Giulia C. Fritis, Pavel S. Paz, Luis F. Lozano, Grigori Chapiro","doi":"10.1137/23m1566649","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Applied Mathematics, Volume 84, Issue 2, Page 581-601, April 2024. <br/> Abstract. Motivated by the foam displacement in porous media with linear adsorption, we extended the existing framework for two-phase flow containing an active tracer described by a non–strictly hyperbolic system of conservation laws. We solved the global Riemann problem by presenting possible wave sequences that composed this solution. Although the problems are well-posed for all Riemann data, there is a parameter region where the solution lacks structural stability. We verified that the model implemented on the most used commercial solver for geoscience, CMG-STARS, describing foam displacement in porous media with adsorption, satisfies the hypotheses to apply the developed theory, resulting in structural stability loss for some parameter regions.","PeriodicalId":51149,"journal":{"name":"SIAM Journal on Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/23m1566649","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
SIAM Journal on Applied Mathematics, Volume 84, Issue 2, Page 581-601, April 2024. Abstract. Motivated by the foam displacement in porous media with linear adsorption, we extended the existing framework for two-phase flow containing an active tracer described by a non–strictly hyperbolic system of conservation laws. We solved the global Riemann problem by presenting possible wave sequences that composed this solution. Although the problems are well-posed for all Riemann data, there is a parameter region where the solution lacks structural stability. We verified that the model implemented on the most used commercial solver for geoscience, CMG-STARS, describing foam displacement in porous media with adsorption, satisfies the hypotheses to apply the developed theory, resulting in structural stability loss for some parameter regions.
期刊介绍:
SIAM Journal on Applied Mathematics (SIAP) is an interdisciplinary journal containing research articles that treat scientific problems using methods that are of mathematical interest. Appropriate subject areas include the physical, engineering, financial, and life sciences. Examples are problems in fluid mechanics, including reaction-diffusion problems, sedimentation, combustion, and transport theory; solid mechanics; elasticity; electromagnetic theory and optics; materials science; mathematical biology, including population dynamics, biomechanics, and physiology; linear and nonlinear wave propagation, including scattering theory and wave propagation in random media; inverse problems; nonlinear dynamics; and stochastic processes, including queueing theory. Mathematical techniques of interest include asymptotic methods, bifurcation theory, dynamical systems theory, complex network theory, computational methods, and probabilistic and statistical methods.