{"title":"A Scale-Invariant Relaxation in Low-Rank Tensor Recovery with an Application to Tensor Completion","authors":"Huiwen Zheng, Yifei Lou, Guoliang Tian, Chao Wang","doi":"10.1137/23m1560847","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Imaging Sciences, Volume 17, Issue 1, Page 756-783, March 2024. <br/> Abstract. In this paper, we consider a low-rank tensor recovery problem. Based on the tensor singular value decomposition (t-SVD), we propose the ratio of the tensor nuclear norm and the tensor Frobenius norm (TNF) as a novel nonconvex surrogate of tensor’s tubal rank. The rationale of the proposed model for enforcing a low-rank structure is analyzed as its theoretical properties. Specifically, we introduce a null space property (NSP) type condition, under which a low-rank tensor is a local minimum for the proposed TNF recovery model. Numerically, we consider a low-rank tensor completion problem as a specific application of tensor recovery and employ the alternating direction method of multipliers (ADMM) to secure a model solution with guaranteed subsequential convergence under mild conditions. Extensive experiments demonstrate the superiority of our proposed model over state-of-the-art methods.","PeriodicalId":49528,"journal":{"name":"SIAM Journal on Imaging Sciences","volume":"54 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Imaging Sciences","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/23m1560847","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
SIAM Journal on Imaging Sciences, Volume 17, Issue 1, Page 756-783, March 2024. Abstract. In this paper, we consider a low-rank tensor recovery problem. Based on the tensor singular value decomposition (t-SVD), we propose the ratio of the tensor nuclear norm and the tensor Frobenius norm (TNF) as a novel nonconvex surrogate of tensor’s tubal rank. The rationale of the proposed model for enforcing a low-rank structure is analyzed as its theoretical properties. Specifically, we introduce a null space property (NSP) type condition, under which a low-rank tensor is a local minimum for the proposed TNF recovery model. Numerically, we consider a low-rank tensor completion problem as a specific application of tensor recovery and employ the alternating direction method of multipliers (ADMM) to secure a model solution with guaranteed subsequential convergence under mild conditions. Extensive experiments demonstrate the superiority of our proposed model over state-of-the-art methods.
期刊介绍:
SIAM Journal on Imaging Sciences (SIIMS) covers all areas of imaging sciences, broadly interpreted. It includes image formation, image processing, image analysis, image interpretation and understanding, imaging-related machine learning, and inverse problems in imaging; leading to applications to diverse areas in science, medicine, engineering, and other fields. The journal’s scope is meant to be broad enough to include areas now organized under the terms image processing, image analysis, computer graphics, computer vision, visual machine learning, and visualization. Formal approaches, at the level of mathematics and/or computations, as well as state-of-the-art practical results, are expected from manuscripts published in SIIMS. SIIMS is mathematically and computationally based, and offers a unique forum to highlight the commonality of methodology, models, and algorithms among diverse application areas of imaging sciences. SIIMS provides a broad authoritative source for fundamental results in imaging sciences, with a unique combination of mathematics and applications.
SIIMS covers a broad range of areas, including but not limited to image formation, image processing, image analysis, computer graphics, computer vision, visualization, image understanding, pattern analysis, machine intelligence, remote sensing, geoscience, signal processing, medical and biomedical imaging, and seismic imaging. The fundamental mathematical theories addressing imaging problems covered by SIIMS include, but are not limited to, harmonic analysis, partial differential equations, differential geometry, numerical analysis, information theory, learning, optimization, statistics, and probability. Research papers that innovate both in the fundamentals and in the applications are especially welcome. SIIMS focuses on conceptually new ideas, methods, and fundamentals as applied to all aspects of imaging sciences.