Non-abelian p-adic Rankin-Selberg L-functions and non-vanishing of central L-values

IF 1.7 1区 数学 Q1 MATHEMATICS
Fabian Januszewski
{"title":"Non-abelian p-adic Rankin-Selberg L-functions and non-vanishing of central L-values","authors":"Fabian Januszewski","doi":"10.1353/ajm.2024.a923241","DOIUrl":null,"url":null,"abstract":"<p><p>abstract:</p><p>We construct $p$-adic $L$-functions for torsion classes for $\\GL(n+1)\\times\\GL(n)$ and along the way prove new congruences between special values of Rankin-Selberg $L$-functions for $\\GL(n+1)\\times\\GL(n)$ over arbitrary number fields. This allows us to control the behavior of $p$-adic $L$-functions under Tate twists and to prove the existence of non-abelian $p$-adic $L$-functions for Hida families on $\\GL(n\\!+\\!1)\\linebreak\\times\\GL(n)$. As an application, we establish generic non-vanishing results for central $L$-values: We give sufficient local conditions for twisted central Rankin-Selberg $L$-values to be generically non-zero.</p></p>","PeriodicalId":7453,"journal":{"name":"American Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1353/ajm.2024.a923241","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

abstract:

We construct $p$-adic $L$-functions for torsion classes for $\GL(n+1)\times\GL(n)$ and along the way prove new congruences between special values of Rankin-Selberg $L$-functions for $\GL(n+1)\times\GL(n)$ over arbitrary number fields. This allows us to control the behavior of $p$-adic $L$-functions under Tate twists and to prove the existence of non-abelian $p$-adic $L$-functions for Hida families on $\GL(n\!+\!1)\linebreak\times\GL(n)$. As an application, we establish generic non-vanishing results for central $L$-values: We give sufficient local conditions for twisted central Rankin-Selberg $L$-values to be generically non-zero.

非阿贝尔 p-adic Rankin-Selberg L 函数和中心 L 值的非凡性
摘要:我们为 $\GL(n+1)\times\GL(n)$ 构建了扭转类的 $p$-adic $L$ 函数,并证明了任意数域上 $\GL(n+1)\times\GL(n)$ 的 Rankin-Selberg $L$ 函数的特殊值之间的新同调。这使我们能够控制 $p$-adic $L$ 函数在泰特扭曲下的行为,并证明在 $GL(n\!+\!1)\linebreak\times\GL(n)$ 上存在非阿贝尔 $p$-adic $L$ 函数的希达族。作为应用,我们建立了中心 $L$ 值的一般非消失结果:我们给出了扭曲中心兰金-塞尔伯格 $L$ 值一般不为零的充分局部条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.20
自引率
0.00%
发文量
35
审稿时长
24 months
期刊介绍: The oldest mathematics journal in the Western Hemisphere in continuous publication, the American Journal of Mathematics ranks as one of the most respected and celebrated journals in its field. Published since 1878, the Journal has earned its reputation by presenting pioneering mathematical papers. It does not specialize, but instead publishes articles of broad appeal covering the major areas of contemporary mathematics. The American Journal of Mathematics is used as a basic reference work in academic libraries, both in the United States and abroad.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信