A proof of conjectured partition identities of Nandi

IF 1.7 1区 数学 Q1 MATHEMATICS
Motoki Takigiku, Shunsuke Tsuchioka
{"title":"A proof of conjectured partition identities of Nandi","authors":"Motoki Takigiku, Shunsuke Tsuchioka","doi":"10.1353/ajm.2024.a923238","DOIUrl":null,"url":null,"abstract":"<p><p>abstract:</p><p>We generalize the theory of linked partition ideals due to Andrews using finite automata in formal language theory and apply it to prove three Rogers--Ramanujan type identities for modulus 14 that were posed by Nandi through a vertex operator theoretic construction of the level 4 standard modules of the affine Lie algebra $A^{(2)}_{2}$.</p></p>","PeriodicalId":7453,"journal":{"name":"American Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1353/ajm.2024.a923238","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

abstract:

We generalize the theory of linked partition ideals due to Andrews using finite automata in formal language theory and apply it to prove three Rogers--Ramanujan type identities for modulus 14 that were posed by Nandi through a vertex operator theoretic construction of the level 4 standard modules of the affine Lie algebra $A^{(2)}_{2}$.

南迪分区特性猜想的证明
摘要:我们利用形式语言理论中的有限自动机概括了安德鲁斯(Andrews)提出的联结分区理想理论,并将其应用于证明南迪(Nandi)通过仿射李代数 $A^{(2)}_{2}$ 的第 4 层标准模块的顶点算子理论构造而提出的模 14 的三个罗杰斯--拉马努扬类型同调。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.20
自引率
0.00%
发文量
35
审稿时长
24 months
期刊介绍: The oldest mathematics journal in the Western Hemisphere in continuous publication, the American Journal of Mathematics ranks as one of the most respected and celebrated journals in its field. Published since 1878, the Journal has earned its reputation by presenting pioneering mathematical papers. It does not specialize, but instead publishes articles of broad appeal covering the major areas of contemporary mathematics. The American Journal of Mathematics is used as a basic reference work in academic libraries, both in the United States and abroad.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信