Riemann-Hilbert hierarchies for hard edge planar orthogonal polynomials

IF 1.7 1区 数学 Q1 MATHEMATICS
Haakan Hedenmalm, Aron Wennman
{"title":"Riemann-Hilbert hierarchies for hard edge planar orthogonal polynomials","authors":"Haakan Hedenmalm, Aron Wennman","doi":"10.1353/ajm.2024.a923237","DOIUrl":null,"url":null,"abstract":"<p><p>abstract:</p><p>We obtain a full asymptotic expansion for orthogonal polynomials with respect to weighted area measure on a Jordan domain $\\mathscr{D}$ with real-analytic boundary. The weight is fixed and assumed to be real-analytically smooth and strictly positive, and for any given precision $\\varkappa$, the expansion holds with an $\\mathrm{O}(N^{-\\varkappa-1})$ error in $N$-dependent neighborhoods of the exterior region as the degree $N$ tends to infinity. The main ingredient is the derivation and analysis of Riemann-Hilbert hierarchies---sequences of scalar Riemann-Hilbert problems---which allows us to express all higher order correction terms in closed form. Indeed, the expansion may be understood as a Neumann series involving an explicit operator. The expansion theorem leads to a semiclassical asymptotic expansion of the corresponding hard edge probability wave function in terms of distributions supported on $\\partial\\mathscr{D}$.</p></p>","PeriodicalId":7453,"journal":{"name":"American Journal of Mathematics","volume":"118 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1353/ajm.2024.a923237","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

abstract:

We obtain a full asymptotic expansion for orthogonal polynomials with respect to weighted area measure on a Jordan domain $\mathscr{D}$ with real-analytic boundary. The weight is fixed and assumed to be real-analytically smooth and strictly positive, and for any given precision $\varkappa$, the expansion holds with an $\mathrm{O}(N^{-\varkappa-1})$ error in $N$-dependent neighborhoods of the exterior region as the degree $N$ tends to infinity. The main ingredient is the derivation and analysis of Riemann-Hilbert hierarchies---sequences of scalar Riemann-Hilbert problems---which allows us to express all higher order correction terms in closed form. Indeed, the expansion may be understood as a Neumann series involving an explicit operator. The expansion theorem leads to a semiclassical asymptotic expansion of the corresponding hard edge probability wave function in terms of distributions supported on $\partial\mathscr{D}$.

硬边平面正交多项式的黎曼-希尔伯特层次结构
摘要:我们得到了在具有实解析边界的约旦域 $mathscr{D}$ 上关于加权面积度量的正交多项式的完全渐近展开。对于任何给定精度 $\varkappa$,当阶数 $N$ 趋于无穷大时,在外部区域的 $N$ 依赖邻域中,扩展以 $\mathrm{O}(N^{-\varkappa-1})$误差成立。其主要内容是黎曼-希尔伯特层次结构--标量黎曼-希尔伯特问题序列--的推导和分析,这使我们能够以封闭形式表达所有高阶修正项。事实上,扩展可以理解为涉及显式算子的诺依曼级数。根据扩展定理,我们可以用支持 $\partial\mathscr{D}$ 的分布对相应的硬边概率波函数进行半经典渐近扩展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.20
自引率
0.00%
发文量
35
审稿时长
24 months
期刊介绍: The oldest mathematics journal in the Western Hemisphere in continuous publication, the American Journal of Mathematics ranks as one of the most respected and celebrated journals in its field. Published since 1878, the Journal has earned its reputation by presenting pioneering mathematical papers. It does not specialize, but instead publishes articles of broad appeal covering the major areas of contemporary mathematics. The American Journal of Mathematics is used as a basic reference work in academic libraries, both in the United States and abroad.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信