Random walks on tori and normal numbers in self-similar sets

IF 1.7 1区 数学 Q1 MATHEMATICS
Yiftach Dayan, Arijit Ganguly, Barak Weiss
{"title":"Random walks on tori and normal numbers in self-similar sets","authors":"Yiftach Dayan, Arijit Ganguly, Barak Weiss","doi":"10.1353/ajm.2024.a923240","DOIUrl":null,"url":null,"abstract":"<p><p>abstract:</p><p>We study random walks on a $d$-dimensional torus by affine expanding maps whose linear parts commute. Assuming an irrationality condition on their translation parts, we prove that the Haar measure is the unique stationary measure. We deduce that if $K\\subset\\mathbb{R}^d$ is an attractor of a finite iterated function system of $n\\geq 2$ maps of the form $x\\mapsto D^{-1}x+t_i$ ($i=1,\\dotsc,n$), where $D$ is an expanding $d\\times d$ integer matrix, and is the same for all the maps, under an irrationality condition on the translation parts $t_i$, almost every point in $K$ (w.r.t. any Bernoulli measure) has an equidistributed orbit under the map $x\\mapsto Dx$ (multiplication mod $\\mathbb{Z}^d$). In the one-dimensional case, this conclusion amounts to normality to base $D$. Thus for example, almost every point in an irrational dilation of the middle-thirds Cantor set is normal to base $3$.</p></p>","PeriodicalId":7453,"journal":{"name":"American Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1353/ajm.2024.a923240","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

abstract:

We study random walks on a $d$-dimensional torus by affine expanding maps whose linear parts commute. Assuming an irrationality condition on their translation parts, we prove that the Haar measure is the unique stationary measure. We deduce that if $K\subset\mathbb{R}^d$ is an attractor of a finite iterated function system of $n\geq 2$ maps of the form $x\mapsto D^{-1}x+t_i$ ($i=1,\dotsc,n$), where $D$ is an expanding $d\times d$ integer matrix, and is the same for all the maps, under an irrationality condition on the translation parts $t_i$, almost every point in $K$ (w.r.t. any Bernoulli measure) has an equidistributed orbit under the map $x\mapsto Dx$ (multiplication mod $\mathbb{Z}^d$). In the one-dimensional case, this conclusion amounts to normality to base $D$. Thus for example, almost every point in an irrational dilation of the middle-thirds Cantor set is normal to base $3$.

自相似集合中的环上随机游走和正态数
摘要:我们通过线性部分相通的仿射膨胀映射来研究$d$维环上的随机行走。假设它们的平移部分有一个非理性条件,我们证明哈量是唯一的静止量。我们推导出,如果$K/subset/mathbb{R}^d$是由形式为$x/mapsto D^{-1}x+t_i$ ($i=1,\dotsc,n$)的$n\geq 2$ 映射组成的有限迭代函数系统的吸引子、其中 $D$ 是一个扩展的 $d\times d$ 整数矩阵,并且对所有映射都是一样的,在平移部分 $t_i$ 的非理性条件下,几乎 $K$ 中的每一点(w.r.t.任何伯努利度量)在映射 $x\mapsto Dx$ 下都有一个等分布轨道(乘法 mod $\mathbb{Z}^d$)。在一维情况下,这一结论相当于以 $D$ 为底的正则性。因此,举例来说,中三康托集合的无理扩张中的几乎每一个点对基元$3$都是正态的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.20
自引率
0.00%
发文量
35
审稿时长
24 months
期刊介绍: The oldest mathematics journal in the Western Hemisphere in continuous publication, the American Journal of Mathematics ranks as one of the most respected and celebrated journals in its field. Published since 1878, the Journal has earned its reputation by presenting pioneering mathematical papers. It does not specialize, but instead publishes articles of broad appeal covering the major areas of contemporary mathematics. The American Journal of Mathematics is used as a basic reference work in academic libraries, both in the United States and abroad.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信