Solvability of a nonlinear second order m-point boundary value problem with p-Laplacian at resonance

IF 1.7 4区 数学 Q1 Mathematics
Meiyu Liu, Minghe Pei, Libo Wang
{"title":"Solvability of a nonlinear second order m-point boundary value problem with p-Laplacian at resonance","authors":"Meiyu Liu, Minghe Pei, Libo Wang","doi":"10.1186/s13661-024-01856-0","DOIUrl":null,"url":null,"abstract":"We study the existence of solutions of the nonlinear second order m-point boundary value problem with p-Laplacian at resonance $$ \\textstyle\\begin{cases} (\\phi _{p}(x'))'=f(t,x,x'),\\quad t\\in [0,1],\\\\ x'(0)=0, \\qquad x(1)=\\sum_{i=1}^{m-2}a_{i}x(\\xi _{i}), \\end{cases} $$ where $\\phi _{p}(s)=|s|^{p-2}s$ , $p>1$ , $f:[0,1]\\times \\mathbb{R}^{2}\\to \\mathbb{R}$ is a continuous function, $a_{i}>0$ ( $i=1,2,\\ldots ,m-2$ ) with $\\sum_{i=1}^{m-2}a_{i}=1$ , $0<\\xi _{1}<\\xi _{2}<\\cdots <\\xi _{m-2}<1$ . Based on the topological transversality method together with the barrier strip technique and the cut-off technique, we obtain new existence results of solutions of the above problem. Meanwhile some examples are also given to illustrate our main results.","PeriodicalId":49228,"journal":{"name":"Boundary Value Problems","volume":"34 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Boundary Value Problems","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1186/s13661-024-01856-0","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

We study the existence of solutions of the nonlinear second order m-point boundary value problem with p-Laplacian at resonance $$ \textstyle\begin{cases} (\phi _{p}(x'))'=f(t,x,x'),\quad t\in [0,1],\\ x'(0)=0, \qquad x(1)=\sum_{i=1}^{m-2}a_{i}x(\xi _{i}), \end{cases} $$ where $\phi _{p}(s)=|s|^{p-2}s$ , $p>1$ , $f:[0,1]\times \mathbb{R}^{2}\to \mathbb{R}$ is a continuous function, $a_{i}>0$ ( $i=1,2,\ldots ,m-2$ ) with $\sum_{i=1}^{m-2}a_{i}=1$ , $0<\xi _{1}<\xi _{2}<\cdots <\xi _{m-2}<1$ . Based on the topological transversality method together with the barrier strip technique and the cut-off technique, we obtain new existence results of solutions of the above problem. Meanwhile some examples are also given to illustrate our main results.
共振时具有 p-Laplacian 的非线性二阶 m 点边界值问题的可解性
我们研究了非线性二阶 m 点边界值问题的共振时 p-Laplacian 的解的存在性 $$ text\style\begin{cases} (\phi _{p}(x'))'=f(t. x,x'),\quad t\in [0,1],\qquad x'(0)=0、x,x'),quad t\in [0,1],\x'(0)=0, \qquad x(1)=sum_{i=1}^{m-2}a_{i}x(\xi _{i}), \end{cases} $$ 其中 $\phi _{p}(s)=|s|^{p-2}s$ , $p>1$ , $f:$f: [0,1]\times \mathbb{R}^{2}\to \mathbb{R}$ 是一个连续函数, $a_{i}>0$ ( $i=1,2,\ldots ,m-2$ ) with $\sum_{i=1}^{m-2}a_{i}=1$ , $0<\xi _{1}<\xi _{2}<\cdots <\xi _{m-2}<1$ 。基于拓扑横断性方法以及障带技术和截断技术,我们得到了上述问题解的新的存在性结果。同时,我们还给出了一些例子来说明我们的主要结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Boundary Value Problems
Boundary Value Problems MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
3.00
自引率
5.90%
发文量
83
审稿时长
4 months
期刊介绍: The main aim of Boundary Value Problems is to provide a forum to promote, encourage, and bring together various disciplines which use the theory, methods, and applications of boundary value problems. Boundary Value Problems will publish very high quality research articles on boundary value problems for ordinary, functional, difference, elliptic, parabolic, and hyperbolic differential equations. Articles on singular, free, and ill-posed boundary value problems, and other areas of abstract and concrete analysis are welcome. In addition to regular research articles, Boundary Value Problems will publish review articles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信