Infinitely many solutions for three quasilinear Laplacian systems on weighted graphs

IF 1.7 4区 数学 Q1 Mathematics
Yan Pang, Junping Xie, Xingyong Zhang
{"title":"Infinitely many solutions for three quasilinear Laplacian systems on weighted graphs","authors":"Yan Pang, Junping Xie, Xingyong Zhang","doi":"10.1186/s13661-024-01846-2","DOIUrl":null,"url":null,"abstract":"We investigate a generalized poly-Laplacian system with a parameter on weighted finite graphs, a generalized poly-Laplacian system with a parameter and Dirichlet boundary value on weighted locally finite graphs, and a $(p,q)$ -Laplacian system with a parameter on weighted locally finite graphs. We utilize a critical points theorem built by Bonanno and Bisci [Bonanno, Bisci, and Regan, Math. Comput. Model. 52(1-2):152–160, 2010], which is an abstract critical points theorem without compactness condition, to obtain that these systems have infinitely many nontrivial solutions with unbounded norm when the parameters locate some well-determined range.","PeriodicalId":49228,"journal":{"name":"Boundary Value Problems","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Boundary Value Problems","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1186/s13661-024-01846-2","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

We investigate a generalized poly-Laplacian system with a parameter on weighted finite graphs, a generalized poly-Laplacian system with a parameter and Dirichlet boundary value on weighted locally finite graphs, and a $(p,q)$ -Laplacian system with a parameter on weighted locally finite graphs. We utilize a critical points theorem built by Bonanno and Bisci [Bonanno, Bisci, and Regan, Math. Comput. Model. 52(1-2):152–160, 2010], which is an abstract critical points theorem without compactness condition, to obtain that these systems have infinitely many nontrivial solutions with unbounded norm when the parameters locate some well-determined range.
加权图上三个准线性拉普拉斯系统的无限多解
我们研究了加权有限图上带参数的广义多拉普拉斯系统、加权局部有限图上带参数和迪里希特边界值的广义多拉普拉斯系统以及加权局部有限图上带参数的 $(p,q)$ 拉普拉斯系统。我们利用 Bonanno 和 Bisci [Bonanno, Bisci, and Regan, Math. Comput. Model. 52(1-2):152-160, 2010] 建立的临界点定理(这是一个没有紧凑性条件的抽象临界点定理),得出当参数位于某个确定的范围内时,这些系统具有无限多的无约束规范的非微观解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Boundary Value Problems
Boundary Value Problems MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
3.00
自引率
5.90%
发文量
83
审稿时长
4 months
期刊介绍: The main aim of Boundary Value Problems is to provide a forum to promote, encourage, and bring together various disciplines which use the theory, methods, and applications of boundary value problems. Boundary Value Problems will publish very high quality research articles on boundary value problems for ordinary, functional, difference, elliptic, parabolic, and hyperbolic differential equations. Articles on singular, free, and ill-posed boundary value problems, and other areas of abstract and concrete analysis are welcome. In addition to regular research articles, Boundary Value Problems will publish review articles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信