{"title":"Kirchhoff-type critical fractional Laplacian system with convolution and magnetic field","authors":"Sihua Liang, Binlin Zhang","doi":"10.1002/mana.202200172","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we consider a class of upper critical Kirchhoff-type fractional Laplacian system with Choquard nonlinearities and magnetic fields. With the help of the limit index theory and the concentration–compactness principles for fractional Sobolev spaces, we establish the existence of infinitely many nontrivial radial solutions for the above system. A distinguished feature of this paper is that the above Kirchhoff-type system is degenerate, that is, the Kirchhoff term is zero at zero.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mana.202200172","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we consider a class of upper critical Kirchhoff-type fractional Laplacian system with Choquard nonlinearities and magnetic fields. With the help of the limit index theory and the concentration–compactness principles for fractional Sobolev spaces, we establish the existence of infinitely many nontrivial radial solutions for the above system. A distinguished feature of this paper is that the above Kirchhoff-type system is degenerate, that is, the Kirchhoff term is zero at zero.