Kirchhoff-type critical fractional Laplacian system with convolution and magnetic field

Pub Date : 2024-03-27 DOI:10.1002/mana.202200172
Sihua Liang, Binlin Zhang
{"title":"Kirchhoff-type critical fractional Laplacian system with convolution and magnetic field","authors":"Sihua Liang,&nbsp;Binlin Zhang","doi":"10.1002/mana.202200172","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we consider a class of upper critical Kirchhoff-type fractional Laplacian system with Choquard nonlinearities and magnetic fields. With the help of the limit index theory and the concentration–compactness principles for fractional Sobolev spaces, we establish the existence of infinitely many nontrivial radial solutions for the above system. A distinguished feature of this paper is that the above Kirchhoff-type system is degenerate, that is, the Kirchhoff term is zero at zero.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mana.202200172","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we consider a class of upper critical Kirchhoff-type fractional Laplacian system with Choquard nonlinearities and magnetic fields. With the help of the limit index theory and the concentration–compactness principles for fractional Sobolev spaces, we establish the existence of infinitely many nontrivial radial solutions for the above system. A distinguished feature of this paper is that the above Kirchhoff-type system is degenerate, that is, the Kirchhoff term is zero at zero.

分享
查看原文
带卷积和磁场的基尔霍夫型临界分数拉普拉斯系统
在本文中,我们考虑了一类带 Choquard 非线性和磁场的上临界 Kirchhoff 型分数拉普拉斯系统。借助极限指数理论和分数 Sobolev 空间的集中-紧密性原理,我们确定了上述系统存在无限多的非微观径向解。本文的一个显著特点是上述基尔霍夫型系统是退化的,即基尔霍夫项在零点为零。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信