Xin Chang, Mike Pivnenko, Angadjit Singh, Weijie Wu, Pawan Shrestha, and Daping Chu
{"title":"Fast-switching reconfigurable metadevice with metasurface-induced liquid crystal alignment for light modulator applications","authors":"Xin Chang, Mike Pivnenko, Angadjit Singh, Weijie Wu, Pawan Shrestha, and Daping Chu","doi":"10.1364/ome.520326","DOIUrl":null,"url":null,"abstract":"Metasurface technology is progressing rapidly towards commercialization and productization, due to its unparallelled advantages over conventional optical solutions. The reconfigurable metasurface, exhibiting more flexibility and capacity than its static counterpart, has been one of the most pursued features of metasurface. In this work, we present liquid crystal-based dynamic metasurface by immersing metasurface in nematic liquid crystal environment. No alignment material was used, and liquid crystal was aligned directly by metasurface. The alignment quality was characterized and the intensity contrast of 33 was obtained. Optical amplitude modulation was achieved with the modulation depth of 91% at the wavelength of 1375 nm. Moreover, sub-micrometre cell gap of 875 nm was realized, and the response time was measured to be sub-millisecond at room temperature, translating to > 1KHz operation frequency. The higher operation frequency of > 3.4 KHz was recorded at elevated temperature. The key performance indicators demonstrated in this work showcase the promising future of liquid crystal – based reconfigurable metasurface, especially for fast light modulator applications.//Metasurface technology is progressing rapidly toward commercialization and productization due to its unparalleled advantages over conventional optical solutions. The reconfigurable metasurface, exhibiting more flexibility and capacity than its static counterpart, has been one of the most pursued features of the metasurface. In this work, we present a liquid crystal-based dynamic metasurface by immersing the metasurface in a nematic liquid crystal environment. No alignment material was used, and liquid crystal was aligned directly by metasurface. The alignment quality was characterized, and the intensity contrast of 33 was obtained. Optical amplitude modulation was achieved with a modulation depth of 91% at the wavelength of 1375 nm. Moreover, a sub-micrometer cell gap of 875 nm was realized, and the response time was measured to be sub-millisecond at room temperature, translating to > 1KHz operation frequency. The higher operation frequency of > 3.4 KHz was recorded at elevated temperatures. The key performance indicators demonstrated in this work showcase the promising future of liquid crystal-based reconfigurable metasurface, especially for fast light modulator applications.","PeriodicalId":19548,"journal":{"name":"Optical Materials Express","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2024-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical Materials Express","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1364/ome.520326","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Metasurface technology is progressing rapidly towards commercialization and productization, due to its unparallelled advantages over conventional optical solutions. The reconfigurable metasurface, exhibiting more flexibility and capacity than its static counterpart, has been one of the most pursued features of metasurface. In this work, we present liquid crystal-based dynamic metasurface by immersing metasurface in nematic liquid crystal environment. No alignment material was used, and liquid crystal was aligned directly by metasurface. The alignment quality was characterized and the intensity contrast of 33 was obtained. Optical amplitude modulation was achieved with the modulation depth of 91% at the wavelength of 1375 nm. Moreover, sub-micrometre cell gap of 875 nm was realized, and the response time was measured to be sub-millisecond at room temperature, translating to > 1KHz operation frequency. The higher operation frequency of > 3.4 KHz was recorded at elevated temperature. The key performance indicators demonstrated in this work showcase the promising future of liquid crystal – based reconfigurable metasurface, especially for fast light modulator applications.//Metasurface technology is progressing rapidly toward commercialization and productization due to its unparalleled advantages over conventional optical solutions. The reconfigurable metasurface, exhibiting more flexibility and capacity than its static counterpart, has been one of the most pursued features of the metasurface. In this work, we present a liquid crystal-based dynamic metasurface by immersing the metasurface in a nematic liquid crystal environment. No alignment material was used, and liquid crystal was aligned directly by metasurface. The alignment quality was characterized, and the intensity contrast of 33 was obtained. Optical amplitude modulation was achieved with a modulation depth of 91% at the wavelength of 1375 nm. Moreover, a sub-micrometer cell gap of 875 nm was realized, and the response time was measured to be sub-millisecond at room temperature, translating to > 1KHz operation frequency. The higher operation frequency of > 3.4 KHz was recorded at elevated temperatures. The key performance indicators demonstrated in this work showcase the promising future of liquid crystal-based reconfigurable metasurface, especially for fast light modulator applications.
期刊介绍:
The Optical Society (OSA) publishes high-quality, peer-reviewed articles in its portfolio of journals, which serve the full breadth of the optics and photonics community.
Optical Materials Express (OMEx), OSA''s open-access, rapid-review journal, primarily emphasizes advances in both conventional and novel optical materials, their properties, theory and modeling, synthesis and fabrication approaches for optics and photonics; how such materials contribute to novel optical behavior; and how they enable new or improved optical devices. The journal covers a full range of topics, including, but not limited to:
Artificially engineered optical structures
Biomaterials
Optical detector materials
Optical storage media
Materials for integrated optics
Nonlinear optical materials
Laser materials
Metamaterials
Nanomaterials
Organics and polymers
Soft materials
IR materials
Materials for fiber optics
Hybrid technologies
Materials for quantum photonics
Optical Materials Express considers original research articles, feature issue contributions, invited reviews, and comments on published articles. The Journal also publishes occasional short, timely opinion articles from experts and thought-leaders in the field on current or emerging topic areas that are generating significant interest.