Clinopyroxenite xenoliths record magma transport and crystallisation in the middle and upper crust: A case study from the Rockeskyllerkopf Volcanic Complex, West Eifel, Germany

IF 3.5 2区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS
Cliff S J Shaw
{"title":"Clinopyroxenite xenoliths record magma transport and crystallisation in the middle and upper crust: A case study from the Rockeskyllerkopf Volcanic Complex, West Eifel, Germany","authors":"Cliff S J Shaw","doi":"10.1093/petrology/egae035","DOIUrl":null,"url":null,"abstract":"Clinopyroxenite xenoliths comprised of cumulus clinopyroxene ± amphibole together with intercumulus phlogopite ± olivine ± apatite ± titanite form a large part of the xenolith load in the oldest deposits of the Rockeskyllerkopf Volcanic Complex (RVC) in the West Eifel volcanic field. The xenoliths also contain xenocrysts of olivine and clinopyroxene derived from mantle peridotite and clinopyroxene from lower crustal granulite. The clinopyroxenite xenoliths are divided into five groups on the basis of their modal mineralogy and mineral compositions. Groups 1 to 4 define a continuous compositional trend indicative of fractionation of a mafic alkaline magma. Group 5 xenoliths are compositionally distinct and have been tentatively linked to high pressure crystallization of phonolitic magma within the RVC system. Thermobarometry of the group 1 – 4 xenoliths indicates that they crystallised between 1 and 4 kilobars, equivalent to a depth of 4-14 km. Group 1 -3 xenoliths all crystallised at between 1050 and 1150 °C whereas the amphibole-rich group 4 xenoliths give temperature estimates of ~ 900 °C. The clinopyroxenites share a common parent magma with clinopyroxene – phlogopite veins found in subcontinental lithospheric mantle xenoliths. However, the vein forming mama was richer in incompatible elements, in particular Zr and Hf and is interpreted to be an early formed batch of magma with the clinopyroxenites crystallising from magma derived from the same mantle, which had been depleted by the earlier phase of melting. Intrusion of magma began around 155 ky prior to the eruption of the RVC. Fe-Mg interdiffusion profiles in zoned clinopyroxene show that the magma that formed the xenoliths was present in the crust for up to 28 ky prior to the eruption. However, most samples give interdiffusion times between 1.5 and 9.9 ky. Based on xenocryst residence times and the calculated P-T conditions for clinopyroxene, there were at least seven separate batches of magma emplaced below Rockeskyllerkopf, probably as sills.","PeriodicalId":16751,"journal":{"name":"Journal of Petrology","volume":"31 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Petrology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1093/petrology/egae035","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Clinopyroxenite xenoliths comprised of cumulus clinopyroxene ± amphibole together with intercumulus phlogopite ± olivine ± apatite ± titanite form a large part of the xenolith load in the oldest deposits of the Rockeskyllerkopf Volcanic Complex (RVC) in the West Eifel volcanic field. The xenoliths also contain xenocrysts of olivine and clinopyroxene derived from mantle peridotite and clinopyroxene from lower crustal granulite. The clinopyroxenite xenoliths are divided into five groups on the basis of their modal mineralogy and mineral compositions. Groups 1 to 4 define a continuous compositional trend indicative of fractionation of a mafic alkaline magma. Group 5 xenoliths are compositionally distinct and have been tentatively linked to high pressure crystallization of phonolitic magma within the RVC system. Thermobarometry of the group 1 – 4 xenoliths indicates that they crystallised between 1 and 4 kilobars, equivalent to a depth of 4-14 km. Group 1 -3 xenoliths all crystallised at between 1050 and 1150 °C whereas the amphibole-rich group 4 xenoliths give temperature estimates of ~ 900 °C. The clinopyroxenites share a common parent magma with clinopyroxene – phlogopite veins found in subcontinental lithospheric mantle xenoliths. However, the vein forming mama was richer in incompatible elements, in particular Zr and Hf and is interpreted to be an early formed batch of magma with the clinopyroxenites crystallising from magma derived from the same mantle, which had been depleted by the earlier phase of melting. Intrusion of magma began around 155 ky prior to the eruption of the RVC. Fe-Mg interdiffusion profiles in zoned clinopyroxene show that the magma that formed the xenoliths was present in the crust for up to 28 ky prior to the eruption. However, most samples give interdiffusion times between 1.5 and 9.9 ky. Based on xenocryst residence times and the calculated P-T conditions for clinopyroxene, there were at least seven separate batches of magma emplaced below Rockeskyllerkopf, probably as sills.
褐辉石闪长岩记录了中上地壳的岩浆运移和结晶过程:德国西埃费尔地区 Rockeskyllerkopf 火山群案例研究
在西艾菲尔火山群(Rockeskyllerkopf Volcanic Complex,RVC)最古老的矿床中,由积云霞石±闪石和积云间辉石±橄榄石±磷灰石±榍石组成的霞石异长岩占了异长岩负荷的很大一部分。这些奇石还含有橄榄石和倩辉石的奇晶,橄榄石和倩辉石来自地幔橄榄岩,倩辉石来自下地壳花岗岩。霞石根据其模式矿物学和矿物成分分为五组。第 1 至第 4 组确定了一个连续的成分趋势,表明了岩浆的分馏。第 5 组的异岩石在成分上截然不同,初步认为与 RVC 系统内的声成岩岩浆高压结晶有关。第1-4组岩石的热压测量表明,它们在1-4千巴之间结晶,相当于4-14千米的深度。第 1 - 3 组闪长岩的结晶温度都在 1050 至 1150 ℃ 之间,而富含闪石的第 4 组闪长岩的结晶温度估计在 900 ℃ 左右。这些霞石与大陆下岩石圈地幔闪长岩中的霞石-辉绿岩矿脉有着共同的母岩浆。然而,形成矿脉的岩浆含有更丰富的不相容元素,特别是 Zr 和 Hf,因此可以解释为是早期形成的一批岩浆,而鳞辉石则是由来自同一地幔的岩浆结晶而成,这些岩浆在早期的熔融阶段已经消耗殆尽。岩浆的侵入始于 RVC 喷发前 155 ky 左右。带状辉石中的铁镁相互扩散剖面显示,在火山爆发前的 28 ky 内,地壳中存在着形成这些陨石的岩浆。不过,大多数样本的互渗时间在 1.5 至 9.9 千年之间。根据鳞片辉石的停留时间和计算出的P-T条件,在Rockeskyllerkopf下面至少有七批独立的岩浆喷出,很可能是岩屑。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Petrology
Journal of Petrology 地学-地球化学与地球物理
CiteScore
6.90
自引率
12.80%
发文量
117
审稿时长
12 months
期刊介绍: The Journal of Petrology provides an international forum for the publication of high quality research in the broad field of igneous and metamorphic petrology and petrogenesis. Papers published cover a vast range of topics in areas such as major element, trace element and isotope geochemistry and geochronology applied to petrogenesis; experimental petrology; processes of magma generation, differentiation and emplacement; quantitative studies of rock-forming minerals and their paragenesis; regional studies of igneous and meta morphic rocks which contribute to the solution of fundamental petrological problems; theoretical modelling of petrogenetic processes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信