Wild bootstrap inference for instrumental variables regressions with weak and few clusters

IF 9.9 3区 经济学 Q1 ECONOMICS
Wenjie Wang , Yichong Zhang
{"title":"Wild bootstrap inference for instrumental variables regressions with weak and few clusters","authors":"Wenjie Wang ,&nbsp;Yichong Zhang","doi":"10.1016/j.jeconom.2024.105727","DOIUrl":null,"url":null,"abstract":"<div><p>We study the wild bootstrap inference for instrumental variable regressions under an alternative asymptotic framework that the number of independent clusters is fixed, the size of each cluster diverges to infinity, and the within cluster dependence is sufficiently weak. We first show that the wild bootstrap Wald test controls size asymptotically up to a small error as long as the parameters of endogenous variables are strongly identified in at least one of the clusters. Second, we establish the conditions for the bootstrap tests to have power against local alternatives. We further develop a wild bootstrap Anderson–Rubin test for the full-vector inference and show that it controls size asymptotically even under weak identification in all clusters. We illustrate their good performance using simulations and provide an empirical application to a well-known dataset about US local labor markets.</p></div>","PeriodicalId":15629,"journal":{"name":"Journal of Econometrics","volume":"241 1","pages":"Article 105727"},"PeriodicalIF":9.9000,"publicationDate":"2024-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Econometrics","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304407624000733","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

Abstract

We study the wild bootstrap inference for instrumental variable regressions under an alternative asymptotic framework that the number of independent clusters is fixed, the size of each cluster diverges to infinity, and the within cluster dependence is sufficiently weak. We first show that the wild bootstrap Wald test controls size asymptotically up to a small error as long as the parameters of endogenous variables are strongly identified in at least one of the clusters. Second, we establish the conditions for the bootstrap tests to have power against local alternatives. We further develop a wild bootstrap Anderson–Rubin test for the full-vector inference and show that it controls size asymptotically even under weak identification in all clusters. We illustrate their good performance using simulations and provide an empirical application to a well-known dataset about US local labor markets.

对弱聚类和少聚类的工具变量回归进行野生自举推断
我们在另一种渐近框架下研究了工具变量回归的野生自举推断,即独立聚类的数量是固定的,每个聚类的规模发散到无穷大,聚类内部的依赖性足够弱。我们首先证明,只要内生变量的参数至少在其中一个聚类中得到了强识别,那么野生自引导 Wald 检验就能控制大小,并逐渐达到一个小误差。其次,我们确定了自举检验对局部替代检验具有效力的条件。我们进一步开发了一种用于全向量推断的野生自举安德森-鲁宾检验,并证明即使在所有聚类的弱识别情况下,它也能近似地控制规模。我们通过模拟说明了它们的良好性能,并提供了一个关于美国地方劳动力市场的著名数据集的经验应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Econometrics
Journal of Econometrics 社会科学-数学跨学科应用
CiteScore
8.60
自引率
1.60%
发文量
220
审稿时长
3-8 weeks
期刊介绍: The Journal of Econometrics serves as an outlet for important, high quality, new research in both theoretical and applied econometrics. The scope of the Journal includes papers dealing with identification, estimation, testing, decision, and prediction issues encountered in economic research. Classical Bayesian statistics, and machine learning methods, are decidedly within the range of the Journal''s interests. The Annals of Econometrics is a supplement to the Journal of Econometrics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信