Temporal Supervised Contrastive Learning for Modeling Patient Risk Progression.

Shahriar Noroozizadeh, Jeremy C Weiss, George H Chen
{"title":"Temporal Supervised Contrastive Learning for Modeling Patient Risk Progression.","authors":"Shahriar Noroozizadeh, Jeremy C Weiss, George H Chen","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>We consider the problem of predicting how the likelihood of an outcome of interest for a patient changes over time as we observe more of the patient's data. To solve this problem, we propose a supervised contrastive learning framework that learns an embedding representation for each time step of a patient time series. Our framework learns the embedding space to have the following properties: (1) nearby points in the embedding space have similar predicted class probabilities, (2) adjacent time steps of the same time series map to nearby points in the embedding space, and (3) time steps with very different raw feature vectors map to far apart regions of the embedding space. To achieve property (3), we employ a <i>nearest neighbor pairing</i> mechanism in the raw feature space. This mechanism also serves as an alternative to \"data augmentation\", a key ingredient of contrastive learning, which lacks a standard procedure that is adequately realistic for clinical tabular data, to our knowledge. We demonstrate that our approach outperforms state-of-the-art baselines in predicting mortality of septic patients (MIMIC-III dataset) and tracking progression of cognitive impairment (ADNI dataset). Our method also consistently recovers the correct synthetic dataset embedding structure across experiments, a feat not achieved by baselines. Our ablation experiments show the pivotal role of our nearest neighbor pairing.</p>","PeriodicalId":74504,"journal":{"name":"Proceedings of machine learning research","volume":"225 ","pages":"403-427"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10976929/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of machine learning research","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We consider the problem of predicting how the likelihood of an outcome of interest for a patient changes over time as we observe more of the patient's data. To solve this problem, we propose a supervised contrastive learning framework that learns an embedding representation for each time step of a patient time series. Our framework learns the embedding space to have the following properties: (1) nearby points in the embedding space have similar predicted class probabilities, (2) adjacent time steps of the same time series map to nearby points in the embedding space, and (3) time steps with very different raw feature vectors map to far apart regions of the embedding space. To achieve property (3), we employ a nearest neighbor pairing mechanism in the raw feature space. This mechanism also serves as an alternative to "data augmentation", a key ingredient of contrastive learning, which lacks a standard procedure that is adequately realistic for clinical tabular data, to our knowledge. We demonstrate that our approach outperforms state-of-the-art baselines in predicting mortality of septic patients (MIMIC-III dataset) and tracking progression of cognitive impairment (ADNI dataset). Our method also consistently recovers the correct synthetic dataset embedding structure across experiments, a feat not achieved by baselines. Our ablation experiments show the pivotal role of our nearest neighbor pairing.

为患者风险进展建模的时间监督对比学习。
我们考虑的问题是,当我们观察到更多病人的数据时,如何预测病人感兴趣的结果的可能性会随着时间的推移而发生变化。为了解决这个问题,我们提出了一个有监督的对比学习框架,该框架可以为患者时间序列的每个时间步学习一个嵌入表征。我们的框架学习的嵌入空间具有以下特性:(1) 嵌入空间中的邻近点具有相似的预测类别概率;(2) 同一时间序列的相邻时间步映射到嵌入空间中的邻近点;(3) 原始特征向量截然不同的时间步映射到嵌入空间中相距甚远的区域。为了实现特性(3),我们在原始特征空间中采用了近邻配对机制。这种机制也是 "数据扩增 "的替代方法,而 "数据扩增 "是对比学习的一个关键要素,据我们所知,临床表格数据缺乏足够现实的标准程序。我们证明,在预测败血症患者死亡率(MIMIC-III 数据集)和跟踪认知障碍进展(ADNI 数据集)方面,我们的方法优于最先进的基线方法。我们的方法还能在各种实验中持续恢复正确的合成数据集嵌入结构,这是基线方法无法实现的。我们的消融实验显示了近邻配对的关键作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信