{"title":"Copper-Induced In Vivo Gene Amplification in Budding Yeast.","authors":"Junyi Wang, Jingya Song, Cong Fan, Jiahao Duan, Kaiyuan He, Jifeng Yuan","doi":"10.34133/bdr.0030","DOIUrl":null,"url":null,"abstract":"<p><p>In the biotechnological industry, multicopy gene integration represents an effective strategy to maintain a high-level production of recombinant proteins and to assemble multigene biochemical pathways. In this study, we developed copper-induced in vivo gene amplification in budding yeast for multicopy gene expressions. To make copper as an effective selection pressure, we first constructed a copper-sensitive yeast strain by deleting the <i>CUP1</i> gene encoding a small metallothionein-like protein for copper resistance. Subsequently, the reporter gene fused with a proline-glutamate-serine-threonine-destabilized <i>CUP1</i> was integrated at the δ sites of retrotransposon (Ty) elements to counter the copper toxicity at 100 μM Cu<sup>2+</sup>. We further demonstrated the feasibility of modulating chromosomal rearrangements for increased protein expression under higher copper concentrations. In addition, we also demonstrated a simplified design of integrating the expression cassette at the <i>CUP1</i> locus to achieve tandem duplication under high concentrations of copper. Taken together, we envision that this method of copper-induced in vivo gene amplification would serve as a robust and useful method for protein overproduction and metabolic engineering applications in budding yeast.</p>","PeriodicalId":56832,"journal":{"name":"生物设计研究(英文)","volume":"6 ","pages":"0030"},"PeriodicalIF":0.0000,"publicationDate":"2024-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10976586/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"生物设计研究(英文)","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.34133/bdr.0030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0
Abstract
In the biotechnological industry, multicopy gene integration represents an effective strategy to maintain a high-level production of recombinant proteins and to assemble multigene biochemical pathways. In this study, we developed copper-induced in vivo gene amplification in budding yeast for multicopy gene expressions. To make copper as an effective selection pressure, we first constructed a copper-sensitive yeast strain by deleting the CUP1 gene encoding a small metallothionein-like protein for copper resistance. Subsequently, the reporter gene fused with a proline-glutamate-serine-threonine-destabilized CUP1 was integrated at the δ sites of retrotransposon (Ty) elements to counter the copper toxicity at 100 μM Cu2+. We further demonstrated the feasibility of modulating chromosomal rearrangements for increased protein expression under higher copper concentrations. In addition, we also demonstrated a simplified design of integrating the expression cassette at the CUP1 locus to achieve tandem duplication under high concentrations of copper. Taken together, we envision that this method of copper-induced in vivo gene amplification would serve as a robust and useful method for protein overproduction and metabolic engineering applications in budding yeast.