Cliona A. Ryan, Deirdre C. Purfield, Daragh Matthews, Carla Canedo-Ribeiro, Ainhoa Valldecabres, Donagh P. Berry
{"title":"Prevalence of sex-chromosome aneuploidy estimated using SNP genotype intensity information in a large population of juvenile dairy and beef cattle","authors":"Cliona A. Ryan, Deirdre C. Purfield, Daragh Matthews, Carla Canedo-Ribeiro, Ainhoa Valldecabres, Donagh P. Berry","doi":"10.1111/jbg.12866","DOIUrl":null,"url":null,"abstract":"<p>Aneuploidy is a genetic condition characterized by the loss or gain of one or more chromosomes. Aneuploidy affecting the sex chromosomes can lead to infertility in otherwise externally phenotypically normal cattle. Early identification of cattle with sex chromosomal aneuploidy is important to minimize the costs associated with rearing infertile cattle and futile breeding attempts. As most livestock breeding programs routinely genotype their breeding populations using single nucleotide polymorphism (SNP) arrays, this study aimed to assess the feasibility of integrating an aneuploidy screening tool into the existing pipelines that handle dense SNP genotype data. A further objective was to estimate the prevalence of sex chromosome aneuploidy in a population of 146,431 juvenile cattle using available genotype intensity data. Three genotype intensity statistics were used: the LogR Ratio (LRR), <i>R</i>-value (the sum of X and Y SNP probe intensities), and B-allele frequency (BAF) measurements. Within the female-verified population of 124,958 individuals, the estimated prevalence rate was 0.0048% for XO, 0.0350% for XXX, and 0.0004% for XXY. The prevalence of XXY in the male-verified population was 0.0870% (i.e., 18 out of 20,670 males). Cytogenetic testing was used to verify 2 of the XXX females who were still alive. The proposed approach can be readily integrated into existing genomic pipelines, serving as an efficient, large-scale screening tool for aneuploidy. Its implementation could enable the early identification of infertile animals with sex-chromosome aneuploidy.</p>","PeriodicalId":54885,"journal":{"name":"Journal of Animal Breeding and Genetics","volume":"141 5","pages":"571-585"},"PeriodicalIF":1.9000,"publicationDate":"2024-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jbg.12866","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Animal Breeding and Genetics","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jbg.12866","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Aneuploidy is a genetic condition characterized by the loss or gain of one or more chromosomes. Aneuploidy affecting the sex chromosomes can lead to infertility in otherwise externally phenotypically normal cattle. Early identification of cattle with sex chromosomal aneuploidy is important to minimize the costs associated with rearing infertile cattle and futile breeding attempts. As most livestock breeding programs routinely genotype their breeding populations using single nucleotide polymorphism (SNP) arrays, this study aimed to assess the feasibility of integrating an aneuploidy screening tool into the existing pipelines that handle dense SNP genotype data. A further objective was to estimate the prevalence of sex chromosome aneuploidy in a population of 146,431 juvenile cattle using available genotype intensity data. Three genotype intensity statistics were used: the LogR Ratio (LRR), R-value (the sum of X and Y SNP probe intensities), and B-allele frequency (BAF) measurements. Within the female-verified population of 124,958 individuals, the estimated prevalence rate was 0.0048% for XO, 0.0350% for XXX, and 0.0004% for XXY. The prevalence of XXY in the male-verified population was 0.0870% (i.e., 18 out of 20,670 males). Cytogenetic testing was used to verify 2 of the XXX females who were still alive. The proposed approach can be readily integrated into existing genomic pipelines, serving as an efficient, large-scale screening tool for aneuploidy. Its implementation could enable the early identification of infertile animals with sex-chromosome aneuploidy.
期刊介绍:
The Journal of Animal Breeding and Genetics publishes original articles by international scientists on genomic selection, and any other topic related to breeding programmes, selection, quantitative genetic, genomics, diversity and evolution of domestic animals. Researchers, teachers, and the animal breeding industry will find the reports of interest. Book reviews appear in many issues.