FDA experiences with a centralized statistical monitoring tool.

IF 1.2 4区 医学 Q4 PHARMACOLOGY & PHARMACY
Xiaofeng Tina Wang, Paul Schuette, Matilde Kam
{"title":"FDA experiences with a centralized statistical monitoring tool.","authors":"Xiaofeng Tina Wang, Paul Schuette, Matilde Kam","doi":"10.1080/10543406.2024.2330210","DOIUrl":null,"url":null,"abstract":"<p><p>The U.S. Food and Drug Administration (FDA) has broadly supported quality by design initiatives for clinical trials - including monitoring and data validation - by releasing two related guidance documents (FDA 2013 and 2019). Centralized statistical monitoring (CSM) can be a component of a quality by design process. In this article, we describe our experience with a CSM platform as part of a Cooperative Research and Development Agreement between CluePoints and FDA. This agreement's approach to CSM is based on many statistical tests performed on all relevant subject-level data submitted to identify outlying sites. An overall data inconsistency score is calculated to assess the inconsistency of data from one site compared to data from all sites. Sites are ranked by the data inconsistency score (<math><mo>-</mo><mrow><mrow><msub><mo>log</mo><mrow><mn>10</mn></mrow></msub></mrow></mrow><mfenced><mi>p</mi></mfenced><mo>,</mo></math>where <math><mi>p</mi></math> is an aggregated <i>p</i>-value). Results from a deidentified trial demonstrate the typical data anomaly findings through Statistical Monitoring Applied to Research Trials analyses. Sensitivity analyses were performed after excluding laboratory data and questionnaire data. Graphics from deidentified subject-level trial data illustrate abnormal data patterns. The analyses were performed by site, country/region, and patient separately. Key risk indicator analyses were conducted for the selected endpoints. Potential data anomalies and their possible causes are discussed. This data-driven approach can be effective and efficient in selecting sites that exhibit data anomalies and provides insights to statistical reviewers for conducting sensitivity analyses, subgroup analyses, and site by treatment effect explorations. Messy data, data failing to conform to standards, and other disruptions (e.g. the COVID-19 pandemic) can pose challenges.</p>","PeriodicalId":54870,"journal":{"name":"Journal of Biopharmaceutical Statistics","volume":" ","pages":"986-992"},"PeriodicalIF":1.2000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biopharmaceutical Statistics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/10543406.2024.2330210","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/29 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

The U.S. Food and Drug Administration (FDA) has broadly supported quality by design initiatives for clinical trials - including monitoring and data validation - by releasing two related guidance documents (FDA 2013 and 2019). Centralized statistical monitoring (CSM) can be a component of a quality by design process. In this article, we describe our experience with a CSM platform as part of a Cooperative Research and Development Agreement between CluePoints and FDA. This agreement's approach to CSM is based on many statistical tests performed on all relevant subject-level data submitted to identify outlying sites. An overall data inconsistency score is calculated to assess the inconsistency of data from one site compared to data from all sites. Sites are ranked by the data inconsistency score (-log10p,where p is an aggregated p-value). Results from a deidentified trial demonstrate the typical data anomaly findings through Statistical Monitoring Applied to Research Trials analyses. Sensitivity analyses were performed after excluding laboratory data and questionnaire data. Graphics from deidentified subject-level trial data illustrate abnormal data patterns. The analyses were performed by site, country/region, and patient separately. Key risk indicator analyses were conducted for the selected endpoints. Potential data anomalies and their possible causes are discussed. This data-driven approach can be effective and efficient in selecting sites that exhibit data anomalies and provides insights to statistical reviewers for conducting sensitivity analyses, subgroup analyses, and site by treatment effect explorations. Messy data, data failing to conform to standards, and other disruptions (e.g. the COVID-19 pandemic) can pose challenges.

美国食品和药物管理局使用中央统计监测工具的经验。
美国食品和药物管理局(FDA)发布了两份相关指导文件(FDA 2013 和 2019),广泛支持临床试验的质量设计举措,包括监测和数据验证。集中统计监测 (CSM) 可以作为按设计保证质量流程的一个组成部分。在本文中,我们将介绍作为 CluePoints 与 FDA 之间合作研发协议一部分的 CSM 平台的使用经验。该协议的 CSM 方法基于对提交的所有相关受试者级数据进行的多项统计测试,以识别离群点。计算总体数据不一致性得分,以评估一个研究机构的数据与所有研究机构数据的不一致性。根据数据不一致性得分(-log10p,其中 p 为综合 p 值)对研究机构进行排序。通过应用于研究试验的统计监测分析,一项去身份化试验的结果展示了典型的数据异常发现。在排除实验室数据和问卷数据后,进行了敏感性分析。来自去标识化受试者级别试验数据的图表说明了异常数据模式。分析按研究机构、国家/地区和患者分别进行。对所选终点进行了关键风险指标分析。讨论了潜在的数据异常及其可能的原因。这种以数据为导向的方法可以有效、高效地筛选出数据异常的研究机构,并为统计审核人员进行敏感性分析、亚组分析和研究机构治疗效果探索提供启示。混乱的数据、不符合标准的数据以及其他干扰(如 COVID-19 大流行)都会带来挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Biopharmaceutical Statistics
Journal of Biopharmaceutical Statistics 医学-统计学与概率论
CiteScore
2.50
自引率
18.20%
发文量
71
审稿时长
6-12 weeks
期刊介绍: The Journal of Biopharmaceutical Statistics, a rapid publication journal, discusses quality applications of statistics in biopharmaceutical research and development. Now publishing six times per year, it includes expositions of statistical methodology with immediate applicability to biopharmaceutical research in the form of full-length and short manuscripts, review articles, selected/invited conference papers, short articles, and letters to the editor. Addressing timely and provocative topics important to the biostatistical profession, the journal covers: Drug, device, and biological research and development; Drug screening and drug design; Assessment of pharmacological activity; Pharmaceutical formulation and scale-up; Preclinical safety assessment; Bioavailability, bioequivalence, and pharmacokinetics; Phase, I, II, and III clinical development including complex innovative designs; Premarket approval assessment of clinical safety; Postmarketing surveillance; Big data and artificial intelligence and applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信