{"title":"FDA experiences with a centralized statistical monitoring tool.","authors":"Xiaofeng Tina Wang, Paul Schuette, Matilde Kam","doi":"10.1080/10543406.2024.2330210","DOIUrl":null,"url":null,"abstract":"<p><p>The U.S. Food and Drug Administration (FDA) has broadly supported quality by design initiatives for clinical trials - including monitoring and data validation - by releasing two related guidance documents (FDA 2013 and 2019). Centralized statistical monitoring (CSM) can be a component of a quality by design process. In this article, we describe our experience with a CSM platform as part of a Cooperative Research and Development Agreement between CluePoints and FDA. This agreement's approach to CSM is based on many statistical tests performed on all relevant subject-level data submitted to identify outlying sites. An overall data inconsistency score is calculated to assess the inconsistency of data from one site compared to data from all sites. Sites are ranked by the data inconsistency score (<math><mo>-</mo><mrow><mrow><msub><mo>log</mo><mrow><mn>10</mn></mrow></msub></mrow></mrow><mfenced><mi>p</mi></mfenced><mo>,</mo></math>where <math><mi>p</mi></math> is an aggregated <i>p</i>-value). Results from a deidentified trial demonstrate the typical data anomaly findings through Statistical Monitoring Applied to Research Trials analyses. Sensitivity analyses were performed after excluding laboratory data and questionnaire data. Graphics from deidentified subject-level trial data illustrate abnormal data patterns. The analyses were performed by site, country/region, and patient separately. Key risk indicator analyses were conducted for the selected endpoints. Potential data anomalies and their possible causes are discussed. This data-driven approach can be effective and efficient in selecting sites that exhibit data anomalies and provides insights to statistical reviewers for conducting sensitivity analyses, subgroup analyses, and site by treatment effect explorations. Messy data, data failing to conform to standards, and other disruptions (e.g. the COVID-19 pandemic) can pose challenges.</p>","PeriodicalId":54870,"journal":{"name":"Journal of Biopharmaceutical Statistics","volume":" ","pages":"986-992"},"PeriodicalIF":1.2000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biopharmaceutical Statistics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/10543406.2024.2330210","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/29 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
The U.S. Food and Drug Administration (FDA) has broadly supported quality by design initiatives for clinical trials - including monitoring and data validation - by releasing two related guidance documents (FDA 2013 and 2019). Centralized statistical monitoring (CSM) can be a component of a quality by design process. In this article, we describe our experience with a CSM platform as part of a Cooperative Research and Development Agreement between CluePoints and FDA. This agreement's approach to CSM is based on many statistical tests performed on all relevant subject-level data submitted to identify outlying sites. An overall data inconsistency score is calculated to assess the inconsistency of data from one site compared to data from all sites. Sites are ranked by the data inconsistency score (where is an aggregated p-value). Results from a deidentified trial demonstrate the typical data anomaly findings through Statistical Monitoring Applied to Research Trials analyses. Sensitivity analyses were performed after excluding laboratory data and questionnaire data. Graphics from deidentified subject-level trial data illustrate abnormal data patterns. The analyses were performed by site, country/region, and patient separately. Key risk indicator analyses were conducted for the selected endpoints. Potential data anomalies and their possible causes are discussed. This data-driven approach can be effective and efficient in selecting sites that exhibit data anomalies and provides insights to statistical reviewers for conducting sensitivity analyses, subgroup analyses, and site by treatment effect explorations. Messy data, data failing to conform to standards, and other disruptions (e.g. the COVID-19 pandemic) can pose challenges.
期刊介绍:
The Journal of Biopharmaceutical Statistics, a rapid publication journal, discusses quality applications of statistics in biopharmaceutical research and development. Now publishing six times per year, it includes expositions of statistical methodology with immediate applicability to biopharmaceutical research in the form of full-length and short manuscripts, review articles, selected/invited conference papers, short articles, and letters to the editor. Addressing timely and provocative topics important to the biostatistical profession, the journal covers:
Drug, device, and biological research and development;
Drug screening and drug design;
Assessment of pharmacological activity;
Pharmaceutical formulation and scale-up;
Preclinical safety assessment;
Bioavailability, bioequivalence, and pharmacokinetics;
Phase, I, II, and III clinical development including complex innovative designs;
Premarket approval assessment of clinical safety;
Postmarketing surveillance;
Big data and artificial intelligence and applications.