{"title":"Progress and challenges of in vivo flow cytometry and its applications in circulating cells of eyes","authors":"Wei Lin, Peng Wang, Yingxin Qi, Yanlong Zhao, Xunbin Wei","doi":"10.1002/cyto.a.24837","DOIUrl":null,"url":null,"abstract":"<p>Circulating inflammatory cells in eyes have emerged as early indicators of numerous major diseases, yet the monitoring of these cells remains an underdeveloped field. In vivo flow cytometry (IVFC), a noninvasive technique, offers the promise of real-time, dynamic quantification of circulating cells. However, IVFC has not seen extensive applications in the detection of circulating cells in eyes, possibly due to the eye's unique physiological structure and fundus imaging limitations. This study reviews the current research progress in retinal flow cytometry and other fundus examination techniques, such as adaptive optics, ultra-widefield retinal imaging, multispectral imaging, and optical coherence tomography, to propose novel ideas for circulating cell monitoring.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cyto.a.24837","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Circulating inflammatory cells in eyes have emerged as early indicators of numerous major diseases, yet the monitoring of these cells remains an underdeveloped field. In vivo flow cytometry (IVFC), a noninvasive technique, offers the promise of real-time, dynamic quantification of circulating cells. However, IVFC has not seen extensive applications in the detection of circulating cells in eyes, possibly due to the eye's unique physiological structure and fundus imaging limitations. This study reviews the current research progress in retinal flow cytometry and other fundus examination techniques, such as adaptive optics, ultra-widefield retinal imaging, multispectral imaging, and optical coherence tomography, to propose novel ideas for circulating cell monitoring.