Median Statistics Estimate of the Distance to M87

IF 3.3 3区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS
Nicholas Rackers, Sofia Splawska, Bharat Ratra
{"title":"Median Statistics Estimate of the Distance to M87","authors":"Nicholas Rackers, Sofia Splawska, Bharat Ratra","doi":"10.1088/1538-3873/ad220e","DOIUrl":null,"url":null,"abstract":"de Grijs &amp; Bono compiled 211 independent measurements of the distance to galaxy M87 in the Virgo cluster from 15 different tracers and reported 31.03 ± 0.14 mag as the arithmetic mean of a subset of this compilation as the best estimate of the distance. We compute three different central estimates—the arithmetic mean, weighted mean, and the median—and corresponding statistical uncertainty for the full data set as well as three sub-compilations. We find that for all three central estimates the error distributions show that the data sets are significantly non-Gaussian. As a result, we conclude that the median is the most reliable of the three central estimates, as median statistics do not assume Gaussianity. We use median statistics to determine the systematic error on the distance by analyzing the scatter in the 15 tracer subgroup distances. From the 211 distance measurements, we recommend a summary M87 distance modulus of <inline-formula>\n<tex-math>\n<?CDATA ${31.08}_{-0.04}^{+0.05}$?>\n</tex-math>\n<mml:math overflow=\"scroll\"><mml:msubsup><mml:mrow><mml:mn>31.08</mml:mn></mml:mrow><mml:mrow><mml:mo>−</mml:mo><mml:mn>0.04</mml:mn></mml:mrow><mml:mrow><mml:mo>+</mml:mo><mml:mn>0.05</mml:mn></mml:mrow></mml:msubsup></mml:math>\n<inline-graphic xlink:href=\"paspad220eieqn1.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula> (statistical) <inline-formula>\n<tex-math>\n<?CDATA ${}_{-0.06}^{+0.04}$?>\n</tex-math>\n<mml:math overflow=\"scroll\"><mml:msubsup><mml:mrow></mml:mrow><mml:mrow><mml:mo>−</mml:mo><mml:mn>0.06</mml:mn></mml:mrow><mml:mrow><mml:mo>+</mml:mo><mml:mn>0.04</mml:mn></mml:mrow></mml:msubsup></mml:math>\n<inline-graphic xlink:href=\"paspad220eieqn2.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula> (systematic) mag, or combining the two errors in quadrature <inline-formula>\n<tex-math>\n<?CDATA ${31.08}_{-0.07}^{+0.06}$?>\n</tex-math>\n<mml:math overflow=\"scroll\"><mml:msubsup><mml:mrow><mml:mn>31.08</mml:mn></mml:mrow><mml:mrow><mml:mo>−</mml:mo><mml:mn>0.07</mml:mn></mml:mrow><mml:mrow><mml:mo>+</mml:mo><mml:mn>0.06</mml:mn></mml:mrow></mml:msubsup></mml:math>\n<inline-graphic xlink:href=\"paspad220eieqn3.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula> mag, rounded to 16.4 ± 0.5 Mpc, all at 68.27% significance.","PeriodicalId":20820,"journal":{"name":"Publications of the Astronomical Society of the Pacific","volume":"53 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Publications of the Astronomical Society of the Pacific","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1538-3873/ad220e","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

de Grijs & Bono compiled 211 independent measurements of the distance to galaxy M87 in the Virgo cluster from 15 different tracers and reported 31.03 ± 0.14 mag as the arithmetic mean of a subset of this compilation as the best estimate of the distance. We compute three different central estimates—the arithmetic mean, weighted mean, and the median—and corresponding statistical uncertainty for the full data set as well as three sub-compilations. We find that for all three central estimates the error distributions show that the data sets are significantly non-Gaussian. As a result, we conclude that the median is the most reliable of the three central estimates, as median statistics do not assume Gaussianity. We use median statistics to determine the systematic error on the distance by analyzing the scatter in the 15 tracer subgroup distances. From the 211 distance measurements, we recommend a summary M87 distance modulus of 31.080.04+0.05 (statistical) 0.06+0.04 (systematic) mag, or combining the two errors in quadrature 31.080.07+0.06 mag, rounded to 16.4 ± 0.5 Mpc, all at 68.27% significance.
距离 M87 的中位数统计估计值
de Grijs & Bono汇编了室女座星系团中M87星系距离的211个独立测量值,这些测量值来自15个不同的追踪器,并报告说31.03 ± 0.14 mag是这个汇编子集的算术平均值,是距离的最佳估计值。我们计算了三个不同的中心估算值--算术平均值、加权平均值和中位数,以及完整数据集和三个子汇编的相应统计不确定性。我们发现,对于所有三种中心估计值,误差分布都表明数据集明显是非高斯的。因此,我们得出结论,中位数是三个中心估计值中最可靠的,因为中位数统计不假定高斯性。通过分析 15 个示踪剂子群距离的散布情况,我们利用中位数统计来确定距离的系统误差。根据 211 个距离测量值,我们建议 M87 的距离模数为 31.08-0.04+0.05(统计误差)-0.06+0.04(系统误差)mag,或者将两个误差四舍五入为 31.08-0.07+0.06 mag,四舍五入为 16.4 ± 0.5 Mpc,显著性均为 68.27%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Publications of the Astronomical Society of the Pacific
Publications of the Astronomical Society of the Pacific 地学天文-天文与天体物理
CiteScore
6.70
自引率
5.70%
发文量
103
审稿时长
4-8 weeks
期刊介绍: The Publications of the Astronomical Society of the Pacific (PASP), the technical journal of the Astronomical Society of the Pacific (ASP), has been published regularly since 1889, and is an integral part of the ASP''s mission to advance the science of astronomy and disseminate astronomical information. The journal provides an outlet for astronomical results of a scientific nature and serves to keep readers in touch with current astronomical research. It contains refereed research and instrumentation articles, invited and contributed reviews, tutorials, and dissertation summaries.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信