{"title":"EFFECTS OF LIGAMENT MODELING APPROACHES ON LOAD TRANSFER AND RANGES OF MOTION IN AN INTACT LUMBAR SPINE: A FINITE ELEMENT INVESTIGATION","authors":"KISHORE PRADEEP, BISWAJIT MAHAPATRA, BIDYUT PAL","doi":"10.1142/s0219519424500052","DOIUrl":null,"url":null,"abstract":"<p>The complex biomechanics of the lumbar spine and its associated structures have been studied using finite element (FE) analysis. Several FE studies used simplified approaches to model the spinal ligaments, assuming that the significant effect of spinal ligaments is on the ranges of motion (ROM) rather than stress–strain distributions on the vertebral body. A comparison of different ligament configurations (tension-only and tension & compression) and their effects on ROM and stress–strain distribution is necessary to verify the above assumption. In this study, an FE model of the L1-L5 lumbar spine was developed and analyzed for three different cases of physiological movements (flexion, extension, and lateral bending). It was found that the spinal flexibility was almost equally constrained by both ligament configurations. The variation in ROM observed for tension-only ligament and tension & compression ligament model ranged between 0.5<sup>∘</sup> and 4<sup>∘</sup> under all loading cases. However, no considerable changes were observed in stress–strain distributions. The findings of this study indicate that assuming the impact of ligaments only in restricting the ROM is reliable and two-node tension-only or tension & compression elements are useful to model the spinal ligaments in FE studies.</p>","PeriodicalId":50135,"journal":{"name":"Journal of Mechanics in Medicine and Biology","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mechanics in Medicine and Biology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1142/s0219519424500052","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
The complex biomechanics of the lumbar spine and its associated structures have been studied using finite element (FE) analysis. Several FE studies used simplified approaches to model the spinal ligaments, assuming that the significant effect of spinal ligaments is on the ranges of motion (ROM) rather than stress–strain distributions on the vertebral body. A comparison of different ligament configurations (tension-only and tension & compression) and their effects on ROM and stress–strain distribution is necessary to verify the above assumption. In this study, an FE model of the L1-L5 lumbar spine was developed and analyzed for three different cases of physiological movements (flexion, extension, and lateral bending). It was found that the spinal flexibility was almost equally constrained by both ligament configurations. The variation in ROM observed for tension-only ligament and tension & compression ligament model ranged between 0.5∘ and 4∘ under all loading cases. However, no considerable changes were observed in stress–strain distributions. The findings of this study indicate that assuming the impact of ligaments only in restricting the ROM is reliable and two-node tension-only or tension & compression elements are useful to model the spinal ligaments in FE studies.
腰椎及其相关结构的复杂生物力学已通过有限元(FE)分析进行了研究。一些有限元研究使用简化的方法来模拟脊柱韧带,假定脊柱韧带的重要影响在于运动范围(ROM),而不是椎体上的应力应变分布。为了验证上述假设,有必要对不同的韧带配置(纯张力和张力加压)及其对 ROM 和应力应变分布的影响进行比较。本研究建立了 L1-L5 腰椎的有限元模型,并对三种不同的生理运动情况(屈曲、伸展和侧弯)进行了分析。研究发现,两种韧带结构对脊柱灵活性的限制几乎相同。在所有加载情况下,纯拉力韧带和拉力& 压缩韧带模型的 ROM 变化范围在 0.5∘ 和 4∘ 之间。然而,在应力-应变分布方面没有观察到明显的变化。本研究的结果表明,假设韧带仅对限制 ROM 有影响是可靠的,而且在有限元分析研究中,双节点纯张力或张力& 压缩元素对脊柱韧带建模是有用的。
期刊介绍:
This journal has as its objective the publication and dissemination of original research (even for "revolutionary concepts that contrast with existing theories" & "hypothesis") in all fields of engineering-mechanics that includes mechanisms, processes, bio-sensors and bio-devices in medicine, biology and healthcare. The journal publishes original papers in English which contribute to an understanding of biomedical engineering and science at a nano- to macro-scale or an improvement of the methods and techniques of medical, biological and clinical treatment by the application of advanced high technology.
Journal''s Research Scopes/Topics Covered (but not limited to):
Artificial Organs, Biomechanics of Organs.
Biofluid Mechanics, Biorheology, Blood Flow Measurement Techniques, Microcirculation, Hemodynamics.
Bioheat Transfer and Mass Transport, Nano Heat Transfer.
Biomaterials.
Biomechanics & Modeling of Cell and Molecular.
Biomedical Instrumentation and BioSensors that implicate ''human mechanics'' in details.
Biomedical Signal Processing Techniques that implicate ''human mechanics'' in details.
Bio-Microelectromechanical Systems, Microfluidics.
Bio-Nanotechnology and Clinical Application.
Bird and Insect Aerodynamics.
Cardiovascular/Cardiac mechanics.
Cardiovascular Systems Physiology/Engineering.
Cellular and Tissue Mechanics/Engineering.
Computational Biomechanics/Physiological Modelling, Systems Physiology.
Clinical Biomechanics.
Hearing Mechanics.
Human Movement and Animal Locomotion.
Implant Design and Mechanics.
Mathematical modeling.
Mechanobiology of Diseases.
Mechanics of Medical Robotics.
Muscle/Neuromuscular/Musculoskeletal Mechanics and Engineering.
Neural- & Neuro-Behavioral Engineering.
Orthopedic Biomechanics.
Reproductive and Urogynecological Mechanics.
Respiratory System Engineering...