LSTM vs CNN in real ship trajectory classification

Pub Date : 2024-03-26 DOI:10.1093/jigpal/jzae027
Juan Pedro Llerena, Jesús García, José Manuel Molina
{"title":"LSTM vs CNN in real ship trajectory classification","authors":"Juan Pedro Llerena, Jesús García, José Manuel Molina","doi":"10.1093/jigpal/jzae027","DOIUrl":null,"url":null,"abstract":"Ship-type identification in a maritime context can be critical to the authorities to control the activities being carried out. Although Automatic Identification Systems has been mandatory for certain vessels, if a vessel does not have them voluntarily or not, it can lead to a whole set of problems, which is why the use of tracking alternatives such as radar is fully complementary for a vessel monitoring systems. However, radars provide positions, but not what they are detecting. Having systems capable of adding categorical information to radar detections of vessels makes it possible to increase control of the activities being carried out, improve safety in maritime traffic, and optimize on-site inspection resources on the part of the authorities. This paper addresses the binary classification problem (fishing ships versus all other vessels) using unbalanced data from real vessel trajectories. It is performed from a deep learning approach comparing two of the main trends, Convolutional Neural Networks and Long Short-Term Memory. In this paper, it is proposed the weighted cross-entropy methodology and compared with classical data balancing strategies. Both networks show high performance when applying weighted cross-entropy compared with the classical machine learning approaches and classical balancing techniques. This work is shown to be a novel approach to the international problem of identifying fishing ships without context.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/jigpal/jzae027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Ship-type identification in a maritime context can be critical to the authorities to control the activities being carried out. Although Automatic Identification Systems has been mandatory for certain vessels, if a vessel does not have them voluntarily or not, it can lead to a whole set of problems, which is why the use of tracking alternatives such as radar is fully complementary for a vessel monitoring systems. However, radars provide positions, but not what they are detecting. Having systems capable of adding categorical information to radar detections of vessels makes it possible to increase control of the activities being carried out, improve safety in maritime traffic, and optimize on-site inspection resources on the part of the authorities. This paper addresses the binary classification problem (fishing ships versus all other vessels) using unbalanced data from real vessel trajectories. It is performed from a deep learning approach comparing two of the main trends, Convolutional Neural Networks and Long Short-Term Memory. In this paper, it is proposed the weighted cross-entropy methodology and compared with classical data balancing strategies. Both networks show high performance when applying weighted cross-entropy compared with the classical machine learning approaches and classical balancing techniques. This work is shown to be a novel approach to the international problem of identifying fishing ships without context.
分享
查看原文
LSTM 与 CNN 在真实船舶轨迹分类中的对比
在海事环境中,船型识别对于当局控制正在进行的活动至关重要。虽然自动识别系统对某些船只来说是强制性的,但如果船只自愿或不自愿安装,就会导致一系列问题,这就是为什么使用雷达等跟踪替代方法对船只监控系统来说是完全互补的。然而,雷达能提供位置,但不能提供探测到的内容。如果系统能够在雷达探测到的船只信息中添加分类信息,就有可能加强对正在进行的活动的控制,提高海上交通的安全性,并优化当局的现场检查资源。本文利用来自真实船只轨迹的非平衡数据,解决了二元分类问题(渔船与所有其他船只)。它采用深度学习方法,比较了卷积神经网络和长短期记忆这两种主要趋势。本文提出了加权交叉熵方法,并与经典的数据平衡策略进行了比较。与经典机器学习方法和经典平衡技术相比,这两种网络在应用加权交叉熵时都表现出了很高的性能。这项工作被证明是解决无语境识别渔船这一国际难题的新方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信