Planar matrices and arrays of Feynman diagrams

IF 2.4 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
Freddy Cachazo, Alfredo Guevara, Bruno Umbert, Yong Zhang
{"title":"Planar matrices and arrays of Feynman diagrams","authors":"Freddy Cachazo, Alfredo Guevara, Bruno Umbert, Yong Zhang","doi":"10.1088/1572-9494/ad102d","DOIUrl":null,"url":null,"abstract":"Recently, planar collections of Feynman diagrams were proposed by Borges and one of the authors as the natural generalization of Feynman diagrams for the computation of <italic toggle=\"yes\">k</italic> = 3 biadjoint amplitudes. Planar collections are one-dimensional arrays of metric trees satisfying an induced planarity and compatibility condition. In this work, we introduce planar matrices of Feynman diagrams as the objects that compute <italic toggle=\"yes\">k</italic> = 4 biadjoint amplitudes. These are symmetric matrices of metric trees satisfying compatibility conditions. We introduce two notions of combinatorial bootstrap techniques for finding collections from Feynman diagrams and matrices from collections. As applications of the first, we find all 693, 13 612 and 346 710 collections for (<italic toggle=\"yes\">k</italic>, <italic toggle=\"yes\">n</italic>) = (3, 7), (3, 8) and (3, 9), respectively. As applications of the second kind, we find all 90 608 and 30 659 424 planar matrices that compute (<italic toggle=\"yes\">k</italic>, <italic toggle=\"yes\">n</italic>) = (4, 8) and (4, 9) biadjoint amplitudes, respectively. As an example of the evaluation of matrices of Feynman diagrams, we present the complete form of the (4, 8) and (4, 9) biadjoint amplitudes. We also start a study of higher-dimensional arrays of Feynman diagrams, including the combinatorial version of the duality between (<italic toggle=\"yes\">k</italic>, <italic toggle=\"yes\">n</italic>) and (<italic toggle=\"yes\">n</italic> − <italic toggle=\"yes\">k</italic>, <italic toggle=\"yes\">n</italic>) objects.","PeriodicalId":10641,"journal":{"name":"Communications in Theoretical Physics","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Theoretical Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1572-9494/ad102d","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Recently, planar collections of Feynman diagrams were proposed by Borges and one of the authors as the natural generalization of Feynman diagrams for the computation of k = 3 biadjoint amplitudes. Planar collections are one-dimensional arrays of metric trees satisfying an induced planarity and compatibility condition. In this work, we introduce planar matrices of Feynman diagrams as the objects that compute k = 4 biadjoint amplitudes. These are symmetric matrices of metric trees satisfying compatibility conditions. We introduce two notions of combinatorial bootstrap techniques for finding collections from Feynman diagrams and matrices from collections. As applications of the first, we find all 693, 13 612 and 346 710 collections for (k, n) = (3, 7), (3, 8) and (3, 9), respectively. As applications of the second kind, we find all 90 608 and 30 659 424 planar matrices that compute (k, n) = (4, 8) and (4, 9) biadjoint amplitudes, respectively. As an example of the evaluation of matrices of Feynman diagrams, we present the complete form of the (4, 8) and (4, 9) biadjoint amplitudes. We also start a study of higher-dimensional arrays of Feynman diagrams, including the combinatorial version of the duality between (k, n) and (nk, n) objects.
平面矩阵和费曼图阵列
最近,博尔赫斯和其中一位作者提出了费曼图的平面集合,作为费曼图的自然概括,用于计算 k = 3 双关节振幅。平面集合是满足诱导平面性和兼容性条件的一维度量树阵列。在这项工作中,我们引入费曼图的平面矩阵作为计算 k = 4 双关节振幅的对象。它们是满足相容性条件的度量树对称矩阵。我们介绍了从费曼图和矩阵集合中寻找集合的组合引导技术的两个概念。作为第一种技术的应用,我们分别找到了 (k, n) = (3,7)、(3,8) 和 (3, 9) 的所有 693、13 612 和 346 710 个集合。作为第二类应用,我们分别找到了计算 (k, n) = (4, 8) 和 (4, 9) 双关节振幅的所有 90 608 和 30 659 424 个平面矩阵。作为评估费曼图矩阵的一个例子,我们介绍了 (4, 8) 和 (4, 9) 双关节振幅的完整形式。我们还开始了对高维费曼图阵列的研究,包括 (k, n) 和 (n - k, n) 对象之间对偶性的组合版本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Communications in Theoretical Physics
Communications in Theoretical Physics 物理-物理:综合
CiteScore
5.20
自引率
3.20%
发文量
6110
审稿时长
4.2 months
期刊介绍: Communications in Theoretical Physics is devoted to reporting important new developments in the area of theoretical physics. Papers cover the fields of: mathematical physics quantum physics and quantum information particle physics and quantum field theory nuclear physics gravitation theory, astrophysics and cosmology atomic, molecular, optics (AMO) and plasma physics, chemical physics statistical physics, soft matter and biophysics condensed matter theory others Certain new interdisciplinary subjects are also incorporated.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信