D A Baghdasaryan, V A Harutynyan, E M Kazaryan, H A Sarkisyan
{"title":"The multi-impurity system in CdSe nanoplatelets: electronic structure and thermodynamic properties","authors":"D A Baghdasaryan, V A Harutynyan, E M Kazaryan, H A Sarkisyan","doi":"10.1088/1572-9494/ad236a","DOIUrl":null,"url":null,"abstract":"This paper theoretically studies the impurity states and the effects of impurity concentration and configuration on the optical, electrical, and statistical properties of CdSe nanoplatelets (NPLs). An image charge-based model of electron-impurity interaction is proposed. The charge-carrier energy spectra and corresponding wave functions depending on the impurity number and configuration are calculated. The electron binding energies are calculated for different NPL thicknesses. It is shown that the image charge-based interaction potential that arises due to the dielectric constants mismatch is much stronger than the interaction potential that does not take such a mismatch into account. Also, it is demonstrated that the binding energies are increasing with the number of impurities. We calculate the canonical partition function using the energy levels of the electron, which in turn is used to obtain the mean energy, heat capacity, and entropy of the non-interacting electron gas. The thermodynamic properties of the non-interacting electron gas that depend on the geometric parameters of the NPL, impurity number, configuration, and temperature are studied.","PeriodicalId":10641,"journal":{"name":"Communications in Theoretical Physics","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Theoretical Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1572-9494/ad236a","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This paper theoretically studies the impurity states and the effects of impurity concentration and configuration on the optical, electrical, and statistical properties of CdSe nanoplatelets (NPLs). An image charge-based model of electron-impurity interaction is proposed. The charge-carrier energy spectra and corresponding wave functions depending on the impurity number and configuration are calculated. The electron binding energies are calculated for different NPL thicknesses. It is shown that the image charge-based interaction potential that arises due to the dielectric constants mismatch is much stronger than the interaction potential that does not take such a mismatch into account. Also, it is demonstrated that the binding energies are increasing with the number of impurities. We calculate the canonical partition function using the energy levels of the electron, which in turn is used to obtain the mean energy, heat capacity, and entropy of the non-interacting electron gas. The thermodynamic properties of the non-interacting electron gas that depend on the geometric parameters of the NPL, impurity number, configuration, and temperature are studied.
期刊介绍:
Communications in Theoretical Physics is devoted to reporting important new developments in the area of theoretical physics. Papers cover the fields of:
mathematical physics
quantum physics and quantum information
particle physics and quantum field theory
nuclear physics
gravitation theory, astrophysics and cosmology
atomic, molecular, optics (AMO) and plasma physics, chemical physics
statistical physics, soft matter and biophysics
condensed matter theory
others
Certain new interdisciplinary subjects are also incorporated.