Fermion integrals for finite spectral triples

John W. Barrett
{"title":"Fermion integrals for finite spectral triples","authors":"John W. Barrett","doi":"arxiv-2403.18428","DOIUrl":null,"url":null,"abstract":"Fermion functional integrals are calculated for the Dirac operator of a\nfinite real spectral triple. Complex, real and chiral functional integrals are\nconsidered for each KO-dimension where they are non-trivial, and phase\nambiguities in the definition are noted.","PeriodicalId":501275,"journal":{"name":"arXiv - PHYS - Mathematical Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Mathematical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2403.18428","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Fermion functional integrals are calculated for the Dirac operator of a finite real spectral triple. Complex, real and chiral functional integrals are considered for each KO-dimension where they are non-trivial, and phase ambiguities in the definition are noted.
有限光谱三元组的费米子积分
对无穷实谱三重的狄拉克算子计算了费米子函数积分。对每个 KO 维度的复积分、实积分和手性功能积分进行了非三维考虑,并指出了定义中的相位差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信