Quantum fields on projective geometries

Daniel Spitz
{"title":"Quantum fields on projective geometries","authors":"Daniel Spitz","doi":"arxiv-2403.17996","DOIUrl":null,"url":null,"abstract":"Considering homogeneous four-dimensional space-time geometries within real\nprojective geometry provides a mathematically well-defined framework to discuss\ntheir deformations and limits without the appearance of coordinate\nsingularities. On Lie algebra level the related conjugacy limits act\nisomorphically to concatenations of contractions. We axiomatically introduce\nprojective quantum fields on homogeneous space-time geometries, based on\ncorrespondingly generalized unitary transformation behavior and\nprojectivization of the field operators. Projective correlators and their\nexpectation values remain well-defined in all geometry limits, which includes\ntheir ultraviolet and infrared limits. They can degenerate with support on\nspace-time boundaries and other lower-dimensional space-time subspaces. We\nexplore fermionic and bosonic superselection sectors as well as the\nirreducibility of projective quantum fields. Dirac fermions appear, which obey\nspin-statistics as composite quantum fields. The framework might be of use for\nthe consistent description of quantum fields in holographic correspondences and\ntheir flat limits.","PeriodicalId":501275,"journal":{"name":"arXiv - PHYS - Mathematical Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Mathematical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2403.17996","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Considering homogeneous four-dimensional space-time geometries within real projective geometry provides a mathematically well-defined framework to discuss their deformations and limits without the appearance of coordinate singularities. On Lie algebra level the related conjugacy limits act isomorphically to concatenations of contractions. We axiomatically introduce projective quantum fields on homogeneous space-time geometries, based on correspondingly generalized unitary transformation behavior and projectivization of the field operators. Projective correlators and their expectation values remain well-defined in all geometry limits, which includes their ultraviolet and infrared limits. They can degenerate with support on space-time boundaries and other lower-dimensional space-time subspaces. We explore fermionic and bosonic superselection sectors as well as the irreducibility of projective quantum fields. Dirac fermions appear, which obey spin-statistics as composite quantum fields. The framework might be of use for the consistent description of quantum fields in holographic correspondences and their flat limits.
投影几何上的量子场
在实射几何中考虑同质四维时空几何为讨论它们的变形和极限提供了一个数学上定义明确的框架,而不会出现坐标奇异性。在李代数层面上,相关的共轭极限与收缩的并集具有同构作用。我们基于相应的广义单位变换行为和场算子的投影化,在同质时空几何上公理地引入了投影量子场。投影关联器和期望值在所有几何极限(包括紫外和红外极限)中都保持了良好的定义。它们可以在时空边界和其他低维时空子空间上支持退化。我们探讨了费米子和玻色子超选扇区及其投影量子场的可还原性。出现了狄拉克费米子,它作为复合量子场服从自旋统计。该框架可用于全息对应中量子场的一致描述及其平面极限。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信