Stephen Ebert, Christian Ferko, Cian Luke Martin, Gabriele Tartaglino-Mazzucchelli
{"title":"Flows in the Space of Interacting Chiral Boson Theories","authors":"Stephen Ebert, Christian Ferko, Cian Luke Martin, Gabriele Tartaglino-Mazzucchelli","doi":"arxiv-2403.18242","DOIUrl":null,"url":null,"abstract":"We study interacting theories of $N$ left-moving and $\\overline{N}$\nright-moving Floreanini-Jackiw bosons in two dimensions. A parameterized family\nof such theories is shown to enjoy (non-manifest) Lorentz invariance if and\nonly if its Lagrangian obeys a flow equation driven by a function of the\nenergy-momentum tensor. We discuss the canonical quantization of such theories\nalong classical stress tensor flows, focusing on the case of the root-$T\n\\overline{T}$ deformation, where we obtain perturbative results for the\ndeformed spectrum in a certain large-momentum limit. In the special case $N =\n\\overline{N}$, we consider the quantum effective action for the root-$T\n\\overline{T}$-deformed theory by expanding around a general classical\nbackground, and we find that the one-loop contribution vanishes for backgrounds\nwith constant scalar gradients. Our analysis can also be interpreted via dual\n$U(1)$ Chern-Simons theories in three dimensions, which might be used to\ndescribe deformations of charged $\\mathrm{AdS}_3$ black holes or quantum Hall\nsystems.","PeriodicalId":501275,"journal":{"name":"arXiv - PHYS - Mathematical Physics","volume":"14 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Mathematical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2403.18242","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We study interacting theories of $N$ left-moving and $\overline{N}$
right-moving Floreanini-Jackiw bosons in two dimensions. A parameterized family
of such theories is shown to enjoy (non-manifest) Lorentz invariance if and
only if its Lagrangian obeys a flow equation driven by a function of the
energy-momentum tensor. We discuss the canonical quantization of such theories
along classical stress tensor flows, focusing on the case of the root-$T
\overline{T}$ deformation, where we obtain perturbative results for the
deformed spectrum in a certain large-momentum limit. In the special case $N =
\overline{N}$, we consider the quantum effective action for the root-$T
\overline{T}$-deformed theory by expanding around a general classical
background, and we find that the one-loop contribution vanishes for backgrounds
with constant scalar gradients. Our analysis can also be interpreted via dual
$U(1)$ Chern-Simons theories in three dimensions, which might be used to
describe deformations of charged $\mathrm{AdS}_3$ black holes or quantum Hall
systems.