Biosynthesis of high antibacterial silver chloride nanoparticles against Ralstonia solanacearum using spent mushroom substrate extract

Wenjing Mo, Chunmei Yao, Hongsen Chen, Aisha Khalfan Nassor, Fangze Gui, Ciqing Hong, Tianpei Huang, Xiong Guan, Lei Xu, Xiaohong Pan
{"title":"Biosynthesis of high antibacterial silver chloride nanoparticles against Ralstonia solanacearum using spent mushroom substrate extract","authors":"Wenjing Mo, Chunmei Yao, Hongsen Chen, Aisha Khalfan Nassor, Fangze Gui, Ciqing Hong, Tianpei Huang, Xiong Guan, Lei Xu, Xiaohong Pan","doi":"10.1088/2632-959x/ad2b81","DOIUrl":null,"url":null,"abstract":"In this study, a green and highly efficient method was proposed to synthesize nano-silver chloride (nano-AgCl) using spent mushroom substrate (SMS) extract as a cheap reactant. Nanoparticles were characterized by a series of techniques like x-ray diffraction (XRD), energy dispersive spectroscopy (EDS), scanning electron microscopy (SEM), and transmission electron microscopy (TEM), which showed the formation of near-spherical silver chloride nanoparticles with an average size of about 8.30 nm. Notably, the synthesized nano-silver chloride has a more prominent antibacterial effect against <italic toggle=\"yes\">Ralstonia solanacearum</italic> (EC<sub>50</sub> = 5.18 mg L<sup>−1</sup>) than non-nano-sized silver chloride particles, nano-silver chloride synthesized by chemical method, and commercial pesticides. In-depth, the study of the mechanism revealed that nano-silver chloride could cause cell membrane disruption, DNA damage and intracellular generation of reactive oxygen species (·OH, ·O<sup>2−</sup> and <sup>1</sup>O<sub>2</sub>), leading to peroxidation damage in <italic toggle=\"yes\">Ralstonia solanacearum</italic> (<italic toggle=\"yes\">R. solanacearum</italic>). Moreover, the reaction between nano-silver chloride and bacteria could be driven by intermolecular forces instead of electrostatic interactions. Our study provides a new approach to synthesizing nano-silver chloride as a highly efficient antibacterial agent and broadens the utilization of agricultural waste spent mushroom substrate.","PeriodicalId":501827,"journal":{"name":"Nano Express","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Express","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2632-959x/ad2b81","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, a green and highly efficient method was proposed to synthesize nano-silver chloride (nano-AgCl) using spent mushroom substrate (SMS) extract as a cheap reactant. Nanoparticles were characterized by a series of techniques like x-ray diffraction (XRD), energy dispersive spectroscopy (EDS), scanning electron microscopy (SEM), and transmission electron microscopy (TEM), which showed the formation of near-spherical silver chloride nanoparticles with an average size of about 8.30 nm. Notably, the synthesized nano-silver chloride has a more prominent antibacterial effect against Ralstonia solanacearum (EC50 = 5.18 mg L−1) than non-nano-sized silver chloride particles, nano-silver chloride synthesized by chemical method, and commercial pesticides. In-depth, the study of the mechanism revealed that nano-silver chloride could cause cell membrane disruption, DNA damage and intracellular generation of reactive oxygen species (·OH, ·O2− and 1O2), leading to peroxidation damage in Ralstonia solanacearum (R. solanacearum). Moreover, the reaction between nano-silver chloride and bacteria could be driven by intermolecular forces instead of electrostatic interactions. Our study provides a new approach to synthesizing nano-silver chloride as a highly efficient antibacterial agent and broadens the utilization of agricultural waste spent mushroom substrate.
利用废蘑菇基质提取物生物合成抗茄科拉氏菌的高抗菌性氯化银纳米粒子
本研究提出了一种利用废蘑菇基质(SMS)提取物作为廉价反应物合成纳米氯化银(nano-AgCl)的绿色高效方法。通过 X 射线衍射 (XRD)、能量色散光谱 (EDS)、扫描电子显微镜 (SEM) 和透射电子显微镜 (TEM) 等一系列技术对纳米颗粒进行了表征,结果显示形成了平均尺寸约为 8.30 nm 的近球形纳米氯化银颗粒。值得注意的是,与非纳米尺寸的氯化银颗粒、化学方法合成的纳米氯化银以及商业杀虫剂相比,合成的纳米氯化银对茄腐镰刀菌(Ralstonia solanacearum)的抗菌效果更为显著(EC50 = 5.18 mg L-1)。对其作用机理的深入研究表明,纳米氯化银可导致细胞膜破坏、DNA 损伤和细胞内活性氧(-OH、-O2- 和 1O2)的生成,从而导致茄果冻酵母菌(R. solanacearum)过氧化损伤。此外,纳米氯化银与细菌之间的反应可能是由分子间作用力而非静电相互作用驱动的。我们的研究为合成纳米氯化银这种高效抗菌剂提供了一种新方法,并拓宽了农业废弃物废蘑菇基质的利用途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信