O. A. Boryak, V. S. Shelkovsky, V. V. Orlov, V. G. Zobnina, M. V. Kosevich
{"title":"Advantages of the low-temperature secondary emission mass spectrometry in analysis of metal ions in water samples revisited","authors":"O. A. Boryak, V. S. Shelkovsky, V. V. Orlov, V. G. Zobnina, M. V. Kosevich","doi":"10.1063/10.0024963","DOIUrl":null,"url":null,"abstract":"A problem of necessity of concentrating trace admixtures of metal ions required for ecological water analysis can be overcome by harnessing a physical phenomenon of phase separation in aqueous solutions during their freezing. It is shown that the accumulation of metal-containing solutes in the channels between ice crystallites in the frozen solids is sufficient for their successful detection by means of low-temperature secondary emission mass spectrometry. Sufficiency of microliters volumes of water is an advantage of such an approach. Observation of various types of metal ions in frozen water samples is demonstrated on the examples of tap water, sea water, snow and a medicinal preparation. Revisiting and summation of physical basics of mass spectrometric examining of frozen water-inorganic salt solutions and estimates of advancement of mass spectrometric instrumentation permit us to propose a workflow for accelerated and simplified mass spectrometric detection of metal pollutants in water.","PeriodicalId":18077,"journal":{"name":"Low Temperature Physics","volume":"33 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Low Temperature Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/10.0024963","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
A problem of necessity of concentrating trace admixtures of metal ions required for ecological water analysis can be overcome by harnessing a physical phenomenon of phase separation in aqueous solutions during their freezing. It is shown that the accumulation of metal-containing solutes in the channels between ice crystallites in the frozen solids is sufficient for their successful detection by means of low-temperature secondary emission mass spectrometry. Sufficiency of microliters volumes of water is an advantage of such an approach. Observation of various types of metal ions in frozen water samples is demonstrated on the examples of tap water, sea water, snow and a medicinal preparation. Revisiting and summation of physical basics of mass spectrometric examining of frozen water-inorganic salt solutions and estimates of advancement of mass spectrometric instrumentation permit us to propose a workflow for accelerated and simplified mass spectrometric detection of metal pollutants in water.
期刊介绍:
Guided by an international editorial board, Low Temperature Physics (LTP) communicates the results of important experimental and theoretical studies conducted at low temperatures. LTP offers key work in such areas as superconductivity, magnetism, lattice dynamics, quantum liquids and crystals, cryocrystals, low-dimensional and disordered systems, electronic properties of normal metals and alloys, and critical phenomena. The journal publishes original articles on new experimental and theoretical results as well as review articles, brief communications, memoirs, and biographies.
Low Temperature Physics, a translation of the copyrighted Journal FIZIKA NIZKIKH TEMPERATUR, is a monthly journal containing English reports of current research in the field of the low temperature physics. The translation began with the 1975 issues. One volume is published annually beginning with the January issues.