Well-Posedness and $$L^2$$ -Decay Estimates for the Navier–Stokes Equations with Fractional Dissipation and Damping

Chengfeng Sun, Yuanyuan Xue, Hui Liu
{"title":"Well-Posedness and $$L^2$$ -Decay Estimates for the Navier–Stokes Equations with Fractional Dissipation and Damping","authors":"Chengfeng Sun, Yuanyuan Xue, Hui Liu","doi":"10.1007/s00574-024-00390-y","DOIUrl":null,"url":null,"abstract":"<p>The generalized three dimensional Navier–Stokes equations with damping are considered. Firstly, existence and uniqueness of strong solutions in the periodic domain <span>\\({\\mathbb {T}}^{3}\\)</span> are proved for <span>\\(\\frac{1}{2}&lt;\\alpha &lt;1,~~ \\beta +1\\ge \\frac{6\\alpha }{2\\alpha -1}\\in (6,+\\infty )\\)</span>. Then, in the whole space <span>\\(R^3,\\)</span> if the critical situation <span>\\(\\beta +1= \\frac{6\\alpha }{2\\alpha -1}\\)</span> and if <span>\\(u_{0}\\in H^{1}(R^{3}) \\bigcap {\\dot{H}}^{-s}(R^{3})\\)</span> with <span>\\(s\\in [0,1/2]\\)</span>, the decay rate of solution has been established. We give proofs of these two results, based on energy estimates and a series of interpolation inequalities, the key of this paper is to give an explanation for that on the premise of increasing damping term, the well-posedness and decay can still preserve at low dissipation <span>\\(\\alpha &lt;1,\\)</span> and the relationship between dissipation and damping is given.</p>","PeriodicalId":501417,"journal":{"name":"Bulletin of the Brazilian Mathematical Society, New Series","volume":"3 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Brazilian Mathematical Society, New Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00574-024-00390-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The generalized three dimensional Navier–Stokes equations with damping are considered. Firstly, existence and uniqueness of strong solutions in the periodic domain \({\mathbb {T}}^{3}\) are proved for \(\frac{1}{2}<\alpha <1,~~ \beta +1\ge \frac{6\alpha }{2\alpha -1}\in (6,+\infty )\). Then, in the whole space \(R^3,\) if the critical situation \(\beta +1= \frac{6\alpha }{2\alpha -1}\) and if \(u_{0}\in H^{1}(R^{3}) \bigcap {\dot{H}}^{-s}(R^{3})\) with \(s\in [0,1/2]\), the decay rate of solution has been established. We give proofs of these two results, based on energy estimates and a series of interpolation inequalities, the key of this paper is to give an explanation for that on the premise of increasing damping term, the well-posedness and decay can still preserve at low dissipation \(\alpha <1,\) and the relationship between dissipation and damping is given.

具有分数耗散和阻尼的纳维-斯托克斯方程的良好拟合度和 $$L^2$$ - 衰变估计值
研究了带阻尼的广义三维纳维-斯托克斯方程。首先,在周期域 \({\mathbb {T}}^{3}\) 中证明了 \(\frac{1}{2}<\alpha <1,~~ \beta +1\ge \frac{6\alpha }{2\alpha -1}\in (6,+\infty )\) 的强解的存在性和唯一性。然后,在整个空间\(R^{3,\)中,如果临界情况\(beta +1=\frac{6\alpha }{2\alpha -1}\) 并且如果\(u_{0}\in H^{1}(R^{3}) \bigcap {dot{H}}^{-s}(R^{3})\) with \(s\in[0,1/2]\),解的衰减率已经建立。我们基于能量估计和一系列插值不等式给出了这两个结果的证明,本文的关键在于解释了在阻尼项增大的前提下,在低耗散\(\alpha <1,\)时仍能保持良好拟合和衰减,并给出了耗散与阻尼之间的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信