Shizhan Liu, Weiyao Lin, Yihang Chen, Yufeng Zhang, Wenrui Dai, John See, Hongkai Xiong
{"title":"A Unified Framework for Jointly Compressing Visual and Semantic Data","authors":"Shizhan Liu, Weiyao Lin, Yihang Chen, Yufeng Zhang, Wenrui Dai, John See, Hongkai Xiong","doi":"10.1145/3654800","DOIUrl":null,"url":null,"abstract":"<p>The rapid advancement of multimedia and imaging technologies has resulted in increasingly diverse visual and semantic data. A large range of applications such as remote-assisted driving requires the amalgamated storage and transmission of various visual and semantic data. However, existing works suffer from the limitation of insufficiently exploiting the redundancy between different types of data. In this paper, we propose a unified framework to jointly compress a diverse spectrum of visual and semantic data, including images, point clouds, segmentation maps, object attributes and relations. We develop a unifying process that embeds the representations of these data into a joint embedding graph according to their categories, which enables flexible handling of joint compression tasks for various visual and semantic data. To fully leverage the redundancy between different data types, we further introduce an embedding-based adaptive joint encoding process and a Semantic Adaptation Module to efficiently encode diverse data based on the learned embeddings in the joint embedding graph. Experiments on the Cityscapes, MSCOCO, and KITTI datasets demonstrate the superiority of our framework, highlighting promising steps toward scalable multimedia processing.</p>","PeriodicalId":50937,"journal":{"name":"ACM Transactions on Multimedia Computing Communications and Applications","volume":"197 1","pages":""},"PeriodicalIF":5.2000,"publicationDate":"2024-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Multimedia Computing Communications and Applications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3654800","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
The rapid advancement of multimedia and imaging technologies has resulted in increasingly diverse visual and semantic data. A large range of applications such as remote-assisted driving requires the amalgamated storage and transmission of various visual and semantic data. However, existing works suffer from the limitation of insufficiently exploiting the redundancy between different types of data. In this paper, we propose a unified framework to jointly compress a diverse spectrum of visual and semantic data, including images, point clouds, segmentation maps, object attributes and relations. We develop a unifying process that embeds the representations of these data into a joint embedding graph according to their categories, which enables flexible handling of joint compression tasks for various visual and semantic data. To fully leverage the redundancy between different data types, we further introduce an embedding-based adaptive joint encoding process and a Semantic Adaptation Module to efficiently encode diverse data based on the learned embeddings in the joint embedding graph. Experiments on the Cityscapes, MSCOCO, and KITTI datasets demonstrate the superiority of our framework, highlighting promising steps toward scalable multimedia processing.
期刊介绍:
The ACM Transactions on Multimedia Computing, Communications, and Applications is the flagship publication of the ACM Special Interest Group in Multimedia (SIGMM). It is soliciting paper submissions on all aspects of multimedia. Papers on single media (for instance, audio, video, animation) and their processing are also welcome.
TOMM is a peer-reviewed, archival journal, available in both print form and digital form. The Journal is published quarterly; with roughly 7 23-page articles in each issue. In addition, all Special Issues are published online-only to ensure a timely publication. The transactions consists primarily of research papers. This is an archival journal and it is intended that the papers will have lasting importance and value over time. In general, papers whose primary focus is on particular multimedia products or the current state of the industry will not be included.