{"title":"Decay characterization of solutions to incompressible Navier–Stokes–Voigt equations","authors":"Jitao Liu, Shasha Wang, Wen-Qing Xu","doi":"10.3233/asy-241900","DOIUrl":null,"url":null,"abstract":"Recently, Niche [J. Differential Equations, 260 (2016), 4440–4453] established upper bounds on the decay rates of solutions to the 3D incompressible Navier–Stokes–Voigt equations in terms of the decay character r∗ of the initial data in H1(R3). Motivated by this work, we focus on characterizing thelarge-time behavior of all space-time derivatives of the solutions for the 2D case and establish upper bounds and lower bounds on their decay rates by making use of the decay character and Fourier splitting methods. In particular, for the case −n2<r∗⩽1, we verify the optimality of the upper bounds, which is new to the best of our knowledge. Similar improved decay results are also true for the 3D case.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3233/asy-241900","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Recently, Niche [J. Differential Equations, 260 (2016), 4440–4453] established upper bounds on the decay rates of solutions to the 3D incompressible Navier–Stokes–Voigt equations in terms of the decay character r∗ of the initial data in H1(R3). Motivated by this work, we focus on characterizing thelarge-time behavior of all space-time derivatives of the solutions for the 2D case and establish upper bounds and lower bounds on their decay rates by making use of the decay character and Fourier splitting methods. In particular, for the case −n2<r∗⩽1, we verify the optimality of the upper bounds, which is new to the best of our knowledge. Similar improved decay results are also true for the 3D case.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.